Primary sclerosing cholangitis (PSC) is a rare, idiopathic, and progressive biliary tract disease that can lead to liver fibrosis and cirrhosis. PSC is characterized by inflammation and destruction of intrahepatic and extrahepatic bile ducts, leading to progressive hepatic fibrosis. The etiology of PSC is unknown, although several genes are associated with its development and clinical course. There is a strong association between inflammatory bowel disease (IBD) of the colon and PSC. An overlap syndrome of autoimmune hepatitis and PSC is an additional, well-established presentation, particularly in younger patients. The diagnosis of PSC relies heavily on characteristic cholangiographic features in the setting of cholestatic liver enzyme abnormalities. Patients with PSC are at increased risk for cholangiocarcinoma and gallbladder cancer, as well as colon cancer in those with concurrent IBD. Screening for malignancies involving the gallbladder, bile ducts, and colon is therefore a critical component of PSC management. Liver transplantation is by far the most effective treatment, although a posttransplant recurrence rate of approximately 20% is reported. This review aims to highlight the most salient aspects of identifying and managing this unique cholestatic liver disease.

EPIDEMIOLOGY

PSC is a rare disorder with regional variation in prevalence. The prevalence in the United States is estimated to be 1 to 16 per 100,000. An estimated 80% of patients diagnosed with PSC have concurrent IBD. There is a 2:1 male predominance when PSC is associated with IBD and a slight female predominance in the absence of IBD (Table 1). Average age at diagnosis is typically 30 to 40 years old. In patients with IBD, the prevalence rate of PSC is estimated to be approximately 5%.

Abbreviations: ERC, endoscopic retrograde cholangiography; IBD, inflammatory bowel disease; MRC, magnetic resonance cholangiography; PSC, primary sclerosing cholangitis.

From the *Liver Care Network and Organ Care Research Swedish Medical Center, Seattle, WA; and †Department of Gastroenterology, Kaiser Permanente Washington, Seattle, WA.

Potential conflict of interest: K.K. consults for, is the on the speakers' bureau for, and received grants from Gilead. He advises, is on the speakers' bureau for, and received grants from Intercept. He consults for and received grants from HighTide.

Received July 21, 2019; accepted November 2, 2019.

View this article online at wileyonlinelibrary.com

© 2020 by the American Association for the Study of Liver Diseases
GENETICS

The pathogenesis of PSC remains unclear, although multiple genes have been implicated in its development. An immunologically mediated process is supported by known associations with human leukocyte antigens. Another theory involves bacterial translocation to the biliary tree based on an animal model of bacterial overgrowth and link with ulcerative colitis. Certain gene mutations including cystic fibrosis transmembrane receptor (CFTR) mutations have also been associated with the development of PSC.

DIAGNOSIS

Patients with PSC are often asymptomatic early in the disease course; usually they are identified through a persistent cholestatic pattern of elevated liver enzymes. Fatigue and pruritus are common symptoms, but many patients are asymptomatic. Biliary tract obstruction may lead to acute pruritus and/or cholangitis, presenting with jaundice, fever, and abdominal pain. Patients with PSC-IBD may present with abnormal bowel habits, abdominal pain, and intestinal bleeding, with concurrent liver enzyme abnormalities.

The differential diagnosis of PSC includes secondary sclerosing cholangitis, immunoglobulin G4–associated cholangitis, autoimmune hepatitis, primary biliary cholangitis, ischemic cholangiopathy, papillary tumors, cholangiocarcinoma, cholangiolithiasis, and HIV cholangiopathy. These causative factors should be evaluated during the diagnostic workup.

Liver biopsy is usually unnecessary in diagnosing PSC, but it is helpful to evaluate PSC-autoimmune hepatitis overlap syndrome and small-duct PSC. Characteristic features of PSC on histology include concentric periductal “onion skinning” fibrosis, although this distinctive feature is insensitive. Similarly, there are no known sensitive serological assays for PSC.

THE ROLE OF IMAGING IN PSC

Given the limitations of liver histology and absence of sensitive serological assays, it is essential to perform cholangiography when PSC is suspected. Magnetic resonance cholangiography (MRC) is now recommended by all major professional societies as the initial diagnostic modality of choice (Table 2).

Even though MRC is highly sensitive and specific (0.86 and 0.94, respectively) in detecting the multifocal biliary stricturing and peripheral pruning phenotype of large-duct PSC, indeterminate cases warrant consideration of endoscopic retrograde cholangiography (ERC), which remains the reference standard for cholangiography (Fig. 1).

TABLE 1. PSC EPIDEMIOLOGY

<table>
<thead>
<tr>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: Men (2:1)</td>
</tr>
<tr>
<td>Age of Diagnosis: Fourth to fifth decade of life</td>
</tr>
<tr>
<td>IBD in PSC: 80%</td>
</tr>
<tr>
<td>PSC in IBD: 5%</td>
</tr>
</tbody>
</table>

TABLE 2. DIAGNOSING PSC

<table>
<thead>
<tr>
<th>MRCP</th>
<th>ERCP</th>
<th>Liver Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninvasive</td>
<td>Greater sensitivity</td>
<td>Used to rule out overlapping conditions</td>
</tr>
<tr>
<td>Less expensive</td>
<td>Allows for therapeutic intervention</td>
<td></td>
</tr>
<tr>
<td>No radiation exposure</td>
<td>Eliminates risk for pancreatitis</td>
<td></td>
</tr>
</tbody>
</table>

FIG 1 Endoscopic retrograde cholangiography demonstrating focal strictures and dilations creating characteristic “beading” appearance of intrahepatic bile ducts.
Primary Sclerosing Cholangitis Gochanour, Jayasekera, and Kowdley

PSC) is seen in less than 10% of cases, necessitating liver biopsy because both MRC or ERC are insensitive for small-duct changes. Although useful for diagnosis, neither baseline nor serial cholangiographic features predict disease progression or prognosis in PSC.

The increased risk for clinically significant biliary obstruction, cholelithiasis, hepatolithiasis, cholangiocellular dysplasia and cholangiocarcinoma, hepatocellular carcinoma, polyps and cancer of the gallbladder, and colon cancer drives the vital role of regular imaging in the long-term management of PSC (Table 3).

Screening for Malignancy and Premalignant States

Despite the modest positive predictive values, most professional societies and expert opinion support screening for cholangiocarcinoma with ultrasonography, MRC, and ERC, with or without serum CA 19-9 every 6 to 12 months. Annual ultrasonography is the recommended modality for gallbladder polyp and cancer screening. As with patients without PSC, the presence of advanced (stage 3) liver fibrosis or cirrhosis warrants hepatocellular carcinoma screening every 6 months, with ultrasonography, computed tomography, or magnetic resonance imaging, with or without serum alpha-fetoprotein. Elastography modalities (e.g., FibroScan, magnetic resonance elastography) for fibrosis staging in PSC require further validation. Even in asymptomatic individuals, colonoscopy to screen for IBD is recommended in all patients at PSC diagnosis. Presence of concurrent PSC and IBD warrants colon cancer screening with colonoscopy every 1 to 2 years. European guidelines additionally recommend colonoscopy with random colonic biopsies for IBD screening every 5 years in patients with PSC who do not have concurrent IBD.

Imaging Directed by Clinical Features

Differentiating malignant and benign dominant biliary strictures is difficult. Nevertheless, the development of dominant biliary strictures should prompt an exhaustive evaluation for cholangiocarcinoma. Despite very high specificity, sensitivity for cholangiocarcinoma of brush cytology obtained on ERC is only 43%. The addition of fluorescent in situ hybridization increases sensitivity to 68%, although specificity decreases to 70%. Pooled data from small studies of endoscopic retrograde cholangioscopy with targeted biopsy demonstrate a 65% sensitivity and 97% specificity.

CURRENT MANAGEMENT

There are no approved pharmacological therapies for PSC. Ursodeoxycholic acid is the best studied, although the role of this therapy in PSC remains unclear. High-dose ursodeoxycholic acid (>28 mg/kg/day) is associated with increased adverse clinical outcomes and should be avoided. Despite enthusiasm about its use as a possible therapy for PSC, recent studies with oral vancomycin have not shown significant benefit, and randomized clinical trials are needed. Patients with decompensated cirrhosis caused by PSC or with refractory cholangitis may be best treated with liver transplantation. Liver transplantation has shown success for selected patients with hilar cholangiocarcinoma caused by PSC. Recurrent PSC is estimated to occur in approximately 20% of patients.

As with other cholestatic liver diseases, osteopenia may be a complication of PSC, and bone density screening at diagnosis and at 2- to 4-year intervals is suggested. Fat-soluble vitamin deficiencies may occur.

PROGNOSIS

The disease course of PSC is highly variable. Serum alkaline phosphatase levels <1.5× upper limit of normal have been associated with improved survival in patients with PSC, whereas patients with alkaline phosphatase levels ≥2.4× upper limit of normal are more likely to die or require liver transplantation.

CONCLUSION

PSC is a rare idiopathic cholestatic liver disease with no approved treatment, although a number of agents are currently showing promise in clinical trials. The disease course is variable, and management is focused on mitigating several life-threatening complications, including hepatic and extrahepatic malignancies, with emphasis on early consideration of liver transplantation in appropriately selected patients; liver transplantation is an effective treatment for end-stage liver disease. Disease recurrence has been reported but does not reduce favorable long-term outcomes.

TABLE 3. COMPLICATIONS OF PSC

<table>
<thead>
<tr>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholangitis</td>
</tr>
<tr>
<td>Gastrointestinal malignancies</td>
</tr>
<tr>
<td>Fat-soluble vitamin deficiencies</td>
</tr>
<tr>
<td>Bone diseases</td>
</tr>
<tr>
<td>Cirrhosis and portal hypertension</td>
</tr>
</tbody>
</table>

127 | CLINICAL LIVER DISEASE, VOL 15, NO 3, MARCH 2020 An Official Learning Resource of AASLD
CORRESPONDENCE

Kris Kowdley, M.D., Liver Care Network and Organ Care Research
Swedish Medical Center, 1124 Columbia Street, Suite 600, Seattle,
WA, 98104. E-mail: kris.kowdley@swedish.org

REFERENCES

1) Hirschfield GM, Karlsen TH, Lindor KD, et al. Primary sclerosing chol-

2) Chapman R, Fevery J, Kalloo A, et al. Diagnosis and management of

3) Lindor KD, Kowdley KV, Harrison ME. ACG clinical guideline: pri-

4) Karlsen TH, Folsaas T, Thorburn D, et al. Primary sclerosing cholan-

5) Aabakken L, Karlsen TH, Albert J, et al. Role of endoscopy in pri-
mary sclerosing cholangitis: European Society of Gastrointestinal
Endoscopy (ESGE) and European Association for the Study of the

6) Schramm C, Eaton J, Ringe KI, et al; MRI Working Group of the
IPSCSG. Recommendations on the use of magnetic resonance im-
aging in PSC-A position statement from the International PSC Study

7) Dave M, Elmunzer BJ, Dwamena BA, et al. Primary sclerosing chol-
angitis: meta-analysis of diagnostic performance of MR cholan-

bile duct brushings for cholangiocarcinoma in primary sclerosing
cholangitis: a systematic review and meta-analysis. Gastrointest

hybridization for diagnosis of cholangiocarcinoma in primary scleros-
ing cholangitis: a systematic review and meta-analysis. Gastrointest

10) Njei B, McCarty TR, Varadaraju S, et al. Systematic review with meta-
analysis: endoscopic retrograde cholangiopancreatography-based
modalities for the diagnosis of cholangiocarcinoma in primary sclero-

acid for the treatment of primary sclerosing cholangitis. Hepatology

12) Sapisochín G, Fernández de Sevilla E, Echeverri J, et al. Liver trans-
plantation for cholangiocarcinoma: current status and new insights.

alkaline phosphatase to < 1.5 upper limit of normal predicts better
outcome and reduced risk of cholangiocarcinoma in primary sclero-

14) Goode EC, Clark AB, Mells GF. Factors associated with outcomes
of patients with primary sclerosing cholangitis and development
and validation of a risk scoring system. Hepatology 2019;69:
2120-2135.