Rule-of-Two + RM as predictors – can they help predict DILI?

Minjun Chen, Ph.D.
NCTR/FDA
Minjun.chen@fda.hhs.gov

The views expressed in this report do not necessarily represent those of the U.S. Food and Drug Administration

Drug-Induced Liver Injury (DILI) Conference XVII

June 7th, 2017
DILI Continues to Be a Complex Scientific and Regulatory Challenge
– Douglas C. Throckmorton, Deputy Director of CDER, 2013

• **Patient safety**: causing severe clinical outcome
 - A leading cause of acute liver failure (57% cases) in US, including 46% cases caused by APAP and 11% caused by non-APAP
 - ALT/AST used in clinic failed to predict severity of clinic outcome

• **Drug development**: causing drug failure
 - *Frequently encountered in the review process*
 - A major reason of premature termination of drugs in development
 - Cause of > 50 drug withdrawals from worldwide market
 - *Existing methods inadequate to predict DILI in humans*
 - Regulatory animal tests failed to identify ~ 45% DILI liability

Manage DILI Risk in the Review Process

IND Phase I Phase II Phase III NDA Marketing

Histology & ALT/AST ALT/AST ALT/AST

Better predictive models are needed!!

ALT/AST+
Bilirubin+Causality (i.e. Hy’s Law)*

FDA DILI guidance, 2009

* Hy’s law case approach can be applied to Phase I & II but it is very rare.
Rule-of-Two (RO2) Recap*

- Observed in 164 drugs
- Verified by 179 drugs
- Demonstrated on 5 drug pairs
- Applied to co-medication

*Chen M, J Borlak, W Tong. Hepatology, 2013, 58, 388
Assess RO2 by the Drugs Approved by FDA Before 2010

763 oral drugs

172 *Most-DILI-concern
Sensitivity = 71/172 (41%)

163

10

101

71

173 *No-DILI-concern
Specificity = 1 - 10/173 (94%)

360

58*

418 *Less-DILI-concern
RO2 Pos% = 58/418 (14%)

RO2 Exceptions for False Positives:
1. Low bioavailability: flavoxate (<1%), aliskiren (2.6%), saquinavir (4%)
2. Highly unchanged excretion: megestrol (60%), chloroquine (61%), disopyramide (55%)
3. ???

* Chen et al. Drug discovery today, 2016, 21, 648
Verified by Pfizer using Hepatotoxic Drugs Failed in Trials

<table>
<thead>
<tr>
<th>Source</th>
<th>Compound name</th>
<th>MOA</th>
<th>Total daily dose (mg)</th>
<th>AlogP</th>
<th>RO2 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer</td>
<td>CP-457920</td>
<td>GABAA5 inverse agonist</td>
<td>120</td>
<td>2.05</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>CP-368296</td>
<td>Glycogen phosphorylase inhibitor</td>
<td>300</td>
<td>1.82</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>CP-456773</td>
<td>IL-1 Releasing inhibitor</td>
<td>1200</td>
<td>2.54</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>CP-085958</td>
<td>LTD4 antagonist</td>
<td>200</td>
<td>4.42</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Zamifenacin</td>
<td>M3 antagonist</td>
<td>40</td>
<td>4.97</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>CP-422935</td>
<td>NPY-1 antagonist</td>
<td>500</td>
<td>5.87</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Darbufelone mesylate</td>
<td>PGHS-2 inhibitor</td>
<td>10</td>
<td>4.60</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>CP-724714</td>
<td>HER2 tyrosine kinase inhibitor</td>
<td>500</td>
<td>4.49</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Takeda</td>
<td>TAK-875</td>
<td></td>
<td>4.43</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Lilly</td>
<td>LY-2409021</td>
<td></td>
<td>6.28</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Merck</td>
<td>MK-0893</td>
<td></td>
<td>7.23</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Addex</td>
<td>ADX-10059</td>
<td></td>
<td>3.02</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mGlur5 negative allosteric modulator</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 6 of 12 hepatotoxic drugs failed in clinical trial were RO2 positives
- Commented by the Pfizer scientists: “combination of mechanistic assays does not work as well as RO2”

Shah (Pfizer), et al. Tox Sci, 2015, 147(2), 500-514
Assess RO2 by the FDA Reviewers

<table>
<thead>
<tr>
<th>Case No</th>
<th>Requested Date</th>
<th>Review division</th>
<th>Review phase</th>
<th>RO2 results</th>
<th>Follow-up findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>2014</td>
<td>DAVP</td>
<td>NDA</td>
<td>+</td>
<td>NDA withdrawn for DILI concern</td>
</tr>
<tr>
<td>#2</td>
<td>2014</td>
<td>DGIEP</td>
<td>IND</td>
<td>-</td>
<td>No significant live issues in phase II trial</td>
</tr>
<tr>
<td>#3</td>
<td>2014</td>
<td>DGIEP</td>
<td>IND</td>
<td>-</td>
<td>Still active without liver issues</td>
</tr>
<tr>
<td>#4</td>
<td>2015</td>
<td>DGIEP</td>
<td>IND</td>
<td>-</td>
<td>In phase II without significant liver findings so far</td>
</tr>
<tr>
<td>#5</td>
<td>2015</td>
<td>DGIEP</td>
<td>IND</td>
<td>-</td>
<td>Currently in NDA application</td>
</tr>
<tr>
<td>#6</td>
<td>2015</td>
<td>DGIEP</td>
<td>NDA</td>
<td>+</td>
<td>2 Hy's law cases + 60 DILI cases from 6000 patients</td>
</tr>
<tr>
<td>#7</td>
<td>2015</td>
<td>DAVP</td>
<td>NDA</td>
<td>+</td>
<td>Label revision for serious DILI warning after marketing</td>
</tr>
<tr>
<td>#8</td>
<td>2015</td>
<td>DPP</td>
<td>IND</td>
<td>-</td>
<td>Still in clinical hold due to the concern of DRESS cases</td>
</tr>
<tr>
<td>#9</td>
<td>2016</td>
<td>DGIEP</td>
<td>NDA</td>
<td>+</td>
<td>Hepatotoxicity observed in the Phase III trial</td>
</tr>
<tr>
<td>#10</td>
<td>2016</td>
<td>DAVP</td>
<td>IND</td>
<td>-</td>
<td>Still in clinical trial (IV drugs)</td>
</tr>
<tr>
<td>#11</td>
<td>2016</td>
<td>DGIEP</td>
<td>NDA</td>
<td>+</td>
<td>Hy's law case observed and trial stopped</td>
</tr>
<tr>
<td>#12</td>
<td>2016</td>
<td>DGIEP</td>
<td>IND</td>
<td>-</td>
<td>Still in clinical trial</td>
</tr>
<tr>
<td>#13</td>
<td>2016</td>
<td>DAVP</td>
<td>IND</td>
<td>+</td>
<td>Still in clinical trial</td>
</tr>
<tr>
<td>#14</td>
<td>2016</td>
<td>DPP</td>
<td>IND</td>
<td>-</td>
<td>Still in clinical trial</td>
</tr>
<tr>
<td>#15</td>
<td>2016</td>
<td>DGIEP</td>
<td>IND</td>
<td>+</td>
<td>Still in clinical trial</td>
</tr>
<tr>
<td>#16</td>
<td>2016</td>
<td>DGIEP</td>
<td>IND</td>
<td>+</td>
<td>Still in clinical trial</td>
</tr>
<tr>
<td>#17</td>
<td>2017</td>
<td>DGIEP</td>
<td>IND</td>
<td>-</td>
<td>Still in clinical trial</td>
</tr>
</tbody>
</table>
Direct-Acting Antivirals for Chronic Hepatitis C: Can Drug Properties Signal Potential for Liver Injury?

Poonam Mishra Minjun Chen

<table>
<thead>
<tr>
<th>Drug name</th>
<th>Therapeutic categories</th>
<th>Approval Year</th>
<th>Daily dose (mg/day)</th>
<th>logP</th>
<th>RO2 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boceprevir</td>
<td>NS3/4A Protease Inhibitor</td>
<td>2011</td>
<td>2400</td>
<td>1.93</td>
<td>-</td>
</tr>
<tr>
<td>Telaprevir</td>
<td>NS3/4A Protease Inhibitor</td>
<td>2011</td>
<td>2250</td>
<td>2.56</td>
<td>-</td>
</tr>
<tr>
<td>Simeprevir</td>
<td>NS3/4A Protease Inhibitor</td>
<td>2013</td>
<td>150</td>
<td>4.69</td>
<td>+</td>
</tr>
<tr>
<td>Sofosbuvir</td>
<td>NS5B Polymerase Inhibitor</td>
<td>2013</td>
<td>400</td>
<td>1.63</td>
<td>-</td>
</tr>
<tr>
<td>Paritaprevir</td>
<td>NS3/4A protease inhibitor</td>
<td>2014</td>
<td>150</td>
<td>3.5</td>
<td>+</td>
</tr>
<tr>
<td>Ombitasvir</td>
<td>NS5A inhibitor</td>
<td>2014</td>
<td>25</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td>Dasabuvir</td>
<td>Non-nucleoside NS5B Polymerase Inhibitor</td>
<td>2014</td>
<td>500</td>
<td>4.7</td>
<td>+</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>CYP3A inhibitor</td>
<td>2014</td>
<td>100</td>
<td>4.24</td>
<td>+</td>
</tr>
<tr>
<td>Ledipasvir</td>
<td>NS5A inhibitor</td>
<td>2014</td>
<td>90</td>
<td>5.57</td>
<td>-</td>
</tr>
<tr>
<td>Asunaprevir*</td>
<td>NS3/4A protease inhibitor</td>
<td>Approved in Japan in 2014</td>
<td>200</td>
<td>3.12</td>
<td>+</td>
</tr>
<tr>
<td>Daclatasvir</td>
<td>NS5A Inhibitor</td>
<td>2015</td>
<td>60</td>
<td>4.57</td>
<td>-</td>
</tr>
<tr>
<td>Elbasvir</td>
<td>NS5A inhibitor</td>
<td>2016</td>
<td>50</td>
<td>5.6</td>
<td>-</td>
</tr>
<tr>
<td>Grazoprevir</td>
<td>NS3/4A protease inhibitor</td>
<td>2016</td>
<td>100</td>
<td>2.94</td>
<td>-</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>Nucleoside inhibitor</td>
<td>1998</td>
<td>1200/1000</td>
<td>-1.92</td>
<td>-/-</td>
</tr>
</tbody>
</table>
A score can be calculated to assess the DILI risk for each drug by factoring daily dose, logP and the capability to generate reactive metabolites (RM)

\[
\text{DILI score} = 0.608 \times \log_e \left(\frac{\text{daily dose}}{\text{mg}} \right) + 0.227 \times \log P + 2.833 \times \text{RM}
\]

- **A Model to Predict Severity of Drug-Induced Liver Injury in Humans**

Minjun Chen,1 Jürgen Borlak,2 and Weida Tong1

NCTR label-based annotation

Greene et al. annotation

Suzuki et al. annotations
Interplay between Drug Properties and Host Factors*

Drug properties
- Physicochemical
- Pharmacological
- Toxicological
- Off-target activities

Host factors
- Genetic variants
- Race/ethnicity
- Age
- Gender
- Reproductive state
- Nutrition, alcohol, smoking
- Lifestyles
- Disease conditions
- Medications
- Gut flora

Cellular injury initiation
- Pharmacological responses
 - Reactive metabolites, drug elimination
- Toxicological responses
 - Covalent binding, haptenization, oxidative stress, mitochondrial injury, ER stress
- Cell death
 - Apoptosis, necrosis, DAMPs release

Host response to injury insult
- Immune/inflammation
- Repair
- Tissue injury

Clinical phenotype and outcome

*Chen M, Suzuki A, Borlak, Lucena M, Andrade R, _J Hepatol_, 2015, 63(2): 503
A Collaboration to Explore the Host-Drug Interactions

564 Cases from Spain DILI Registry
- Focus on [hepatocellular](#) vs [cholestatic injury](#)
- RUCAM assessment of probable or higher
- Only caused by single agent

Drug Properties
- Molecular weight
- Lipophilicity (logP)
- Hepatic metabolism
- Reactive metabolite
- Mitochondrial liability
- Hepatic transporter
- Drug electronegativity

Host Factors
- Demography
 - Age
 - Sex
- Comorbidities
 - Hypertension
- Previous allergies
- Co-medications

71 drug factors from NCTR LTKB database or literature
68 host factors from Spain DILI registry

High/Low HM: >50/<50% of parent drug are metabolized
courtesy from Andres Gonzalez Jumenez
Take-home Messages

- Current evidences suggest that RO2 positives caught ~40% hepatotoxic drugs with a low false positive rate, and could serve as an alert but not a stop signal for DILI.

- DILIscore provides a continuous scale to estimate DILI risk; however, RM information of most drugs is not available.

- These predictive models could early signal DILI risk, and further assessment is warranted.

- Integrating drug properties with host factors might provide an alternative avenue to better understand and predict DILI risk especially in subpopulations (e.g. women, aging, preexisting liver diseases).
Acknowledgements

FDA Liver Toxicity Working Group (CDER):

- Eileen E Navarro Almario
- Shashi Amur
- Mark Avigan
- Jane Bai
- Tina Burgrass (CVM)
- Lara Dimick
- Caroline Jjingo
- Ruby Mehta
- Poonam Mishra
- Lilliam Rosario
- Imran Khan
- John Senior
- Marc Stone
- Weida Tong
- Crentsil Victor
- Lourdes Villalba
-

NCTR colleagues

Non-FDA collaborators:

- Jurgen Borlak (Germany)
- Ayako Suzuki (UAMS, US)
- Raul Andrade & Maribel Lucena (Spain DILI registry)
- Yvonne Will (Pfizer)
- Pooja Jain (Elsevier)
- Peter End, Michael Merz (Novartis)

FDA Supports:

- NCTR funding
- Critical Path Initiatives
- Office of Women’s Health (OWH)
- Chief Scientist Challenge Grant
- Office of International Program
Welcome to visit little rock