LB-1
The Effect of Extracorporeal C3a Cellular Therapy in Severe Alcoholic Hepatitis-The Elad Trial
Julie A. Thompson1, Ram M. Subramanian2, Ali Akhkhaji3, David J. Reich4, Ross Mac Nicholas5, Tarek I. Hassanein6, Lewis W. Teperman7, Jan Stange5
1Hepatology, University of Minnesota Medical Center, Minneapolis, MN; 2Hepatology, Emory University School of Medicine, Atlanta, GA; 3Transplant Intensive Care Unit, University of Pittsburgh Medical Center, Pittsburgh, PA; 4Surgery, Drexel University Medical Center, Philadelphia, PA; 5Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia; 6Hepatology, Southern California GI and Liver Centers, San Diego, CA; 7Infectious Diseases/Nephrology, University of Rostock, Rostock, Germany; 8Surgery, NYU Langone Medical Center, New York City, NY

Background: Alcoholic hepatitis (AH) results from hepatic inflammation, oxidative damage, cholestasis and apoptosis, all of which induce a vicious cycle that leads to liver and secondary organ failure associated with poor prognosis.

Study Design: Vital Therapies’ study VTI-208 was conducted in subjects with AH, using an extracorporeal hepatocellular therapy system (ELAD) containing human C3A hepatoma cells, to determine if ELAD can increase survival in AH. C3A cells express acute phase response and immune-modulatory proteins and growth factors and may provide anti-inflammatory therapy and support hepatocellular function in early stages of AH.

Inclusion/Exclusion Criteria: Subjects >18 yrs old with a clinical or histologic diagnosis of AH, bilirubin >8mg/dl, Maddrey DF >32, MELD ≤35, platelets ≤40,000, and without severe concomitant disease, uncontrolled sepsis or bleeding, hemodynamic instability or need for chronic dialysis.

Intervention: Subjects were randomized to either 3-5 days continuous ELAD therapy plus standard of care (SOC) or to SOC alone.

Endpoint: Overall survival (OS) assessed by Kaplan-Meier analysis. Pre-specified subgroups included subjects with MELD and age ≥/< baseline median.

Results: From 2013-2015, 203 subjects were enrolled (96 ELAD and 107 SOC), at 40 sites worldwide. Comparison of baseline characteristics showed no significant differences between groups and within subgroups, including treatment with steroids or pentoxifylline. There was no significant difference in serious adverse events between groups and no unexpected serious adverse events were related to the cellular component. In an intent-to-treat (ITT) analysis, there was no significant difference in OS (52.1% vs 52.3%). Subgroup analysis showed strong trends toward improved OS in groups in which MELD or age were lower than baseline medians. The majority of subjects (n=120) presented baseline medians. The majority of subjects (n=120) presented

Conclusions: There was no difference in OS between ELAD and SOC but there was a trend toward survival benefit in patients with MELD <28 or age <47 years. These data suggest ELAD may be a favorable AH treatment modality in younger patients with sufficient renal function and less severe coagulopathy. A study to confirm the survival benefit in this population is in preparation and is scheduled to start in 2016.

Disclosures:
Julie A. Thompson - Consulting: Vital therapies
David J. Reich - Consulting: VTI; Grant/Research Support: VTI; Speaking and Teaching: newwave

Tarek I. Hassanein - Advisory Committees or Review Panels: AbbVie Pharmaceuticals, Bristol-Myers Squibb, Grant/Research Support: AbbVie Pharmaceuticals, Obalon, Bristol-Myers Squibb, Eisai Pharmaceuticals, Gilead Sciences, Merck Sharp & Dohme, NGM BioPharmaceuticals, Ocera Therapeutics, Salix Pharmaceuticals, Sundise, TaiGen Biotechnology; Vital Therapies, Tabria, Shionogi & Co. Ltd, La Jolla Pharmaceuticals, Contatus Pharmaceuticals; Speaking and Teaching: Baxter, Bristol-Myers Squibb, Gilead Sciences, Salix Pharmaceuticals, AbbVie Pharmaceuticals

Jan Stange - Consulting: Vital Therapies Inc.; Stock Shareholder: Albutec GmbH

The following people have nothing to disclose: Ram M. Subramanian, Ali Akhkhaji, Ross Mac Nicholas, Lewis W. Teperman

LB-2
A Phase 3 Double-Blind Placebo-Controlled Evaluation of Sofosbuvir/Velpatasvir Fixed Dose Combination for 12 Weeks in Naive and Experienced Genotype 1, 2, 4, 5, 6 HCV Infected Patients with and without cirrhosis: Results of the ASTRAL-1 Study
Jordan J. Feld1, Kosh Agarwal2, Christophe Hezode3, Tarik Asselah4, Peter J. Ruane5, Norbert Gruner6, Armand Abergel7, Alessandra Mangia8, Ching-Lung Lai9, Henry Lik-Yuen Chan10, Francesco Mazzotta11, Christophe Moreno12, Eric M. Yashida13, Stephen Shafar14, William J. Towner15, Tram T. Tran16, Yanni Zhu17, Evgeniya S. Svarovskaia17, John McNally18, Ana Osinusi19, Diana M. Brainard19, John G. McHutchison17, Ira M. Jacobson18, Stefan Zeuzem19; 1Toronto Western Hospital Liver Centre, Toronto, ON, Canada; 2Institute of Liver Studies, Kings College Hospital, London, United Kingdom; 3Hospital Henri Mondor, Université Paris Est, Créteil, France; 4Beaumont Hospital, University Paris Diderot, INSERM UMR 1149, Paris, France; 5Ruane Medical and Liver Institute, Los Angeles, CA; 6Ludwig-Maximilians-University, Munich, Germany; 7CHU Estaing, Unité Mixte de Recherche Université d’Auvergne, Clermont Ferrand, France; 8Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy; 9University of Hong Kong, Hong Kong, Hong Kong; 10The Chinese University of Hong Kong, Hong Kong, Hong Kong; 11Santa Maria Annunziata Hospital, Firenze, Italy; 12CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; 13University of British Columbia, Vancouver, BC, Canada; 14University of Alberta, Edmonton, AB, Canada; 15Southern California Permanente Medical Group, Los Angeles, CA; 16Cedars-Sinai Medical Center, Los Angeles, CA; 17Gilead Sciences, Inc., Foster City, CA; 18Mount Sinai Beth Israel Medical Center, New York, NY; 19Johann Wolfgang Goethe University Medical Center, Frankfurt, Germany

Introduction: Velpatasvir (VEL, GS-5816) is a pan-genotypic HCV NS5A inhibitor. In Phase 2 studies, the combination of sofosbuvir (SOF) and VEL for 12 weeks resulted in high SVR12 in patients with genotype 1-6 HCV infection. This Phase 3 study evaluated treatment with a fixed dose combination of SOF/VEL for 12 weeks in patients with genotype 1, 2, 4, 5, or 6 HCV infection (ClinicalTrials.gov Identifier: NCT02201940).

Methods: Patients with genotype 1, 2, 4, or 6 chronic HCV infection were randomized 5:1 to received SOF/VEL (400 mg /100 mg daily) or placebo for 12 weeks. Patients with genotype 5 infection were enrolled to the SOF/VEL treatment group. Patients with genotype 3 infection were evaluated in a separate study. The primary efficacy analysis was an evaluation of the superiority of SVR12 for the SOF/VEL-treated patients to a pre-specified SVR12 goal of 85%. Secondary endpoints included safety/tolerability, resistance, and additional efficacy outcomes. Results: 740 patients were enrolled at 81 sites in North America, Europe and Hong Kong: 60% male, 79% white, 30% IL28B CC genotype, 32% treatment-experienced (TE), and 19% compensated cirrhosis. Of the 624 patients treated with SOF/VEL, the genotype distribution was 53% GT1, 17% GT2, 19% GT4, 6% GT5 and 7% GT6. Overall SVR12 for SOF/VEL-treated patients was 99.0% (95% con-
Sofosbuvir (SOF) Plus Ribavirin (RBV) for 12 or 16 Weeks in HCV Genotype (GT) 3-Infected Patients With Advanced Fibrosis or Cirrhosis: The ALLY-3+ Phase 3 Study

Vincent Leroy1, Peter W. Angus2, Jean-Pierre Bronowicki3, Gregory Dore4, Christophe Hezode5, Stephen Pianko6, Stannislas Pol7, Katherine A. Stuart8, Edmund Tse9, Fiona McHee10, Rafia Bhoore11, Maria Jesus Jimenez Exposito12, Alex J. Thompson13, 1CHU de Grenoble, La Tronche, France; 2Austin Hospital, Heidelberg, VIC, Australia; 3CHU Nancy & Lorraine University, Nancy, France; 4St Vincent’s Hospital and Kirby Institute, Sydney, NSW, Australia; 5CHU Henri Mondor, Creteil, France; 6Monash Medical Centre, Clayton, SA, Australia; 7Hospital Cochin, Paris, France; 8Gallipoli Medical Research Foundation, Greenslopes, QLD, Australia; 9Royal Adelaide Hospital, Adelaide, SA, Australia; 10Bristol-Myers Squibb, Wallingford, CT; 11Bristol-Myers Squibb, Princeton, NJ

Background: HCV GT3-infected patients are a challenging population in urgent need of optimally effective therapies. In a previous study in GT3 infection (ALLY-3), 12 weeks of DCV (pangenotypic NS5A inhibitor) plus SOF (nucleoside NS5B inhibitor) achieved 96% sustained virologic response at post-treatment week 12 (SVR12) in patients without cirrhosis and 63% in patients with cirrhosis. In ALLY-3+, the efficacy and safety of DCV+SOF with RBV for 12 vs 16 weeks were evaluated in HCV GT3 patients with compensated advanced fibrosis or cirrhosis.

Methods: Open-label, phase 3b study in HCV GT3-infected treatment-naive or –experienced patients with compensated advanced fibrosis or cirrhosis. Patients were randomized 1:1 to receive 12 weeks vs 16 weeks of DCV (60 mg QD) + SOF (400 mg QD) + RBV (weight based), stratified by advanced fibrosis or cirrhosis status. An interim analysis of efficacy (SVR at post-treatment week 4 [SVR4]) and safety outcomes is reported. SVR12 (primary endpoint) data will be available for presentation.

Results: 50 patients were treated [12 weeks, 24; 16 weeks, 26]. Most were male (80%), white (98%), and treatment experienced (74%; 10% prior relapse on SOF+RBV); 72% had cirrhosis and 52% had HCV RNA ≥6 million IU/mL. Baseline characteristics were comparable between arms. Overall SVR4 by intention-to-treat analysis was 92%. In the 12- and 16-week arms, SVR4 was 88% and 96%, respectively. In the 12-week arm SVR4 was 83% in those with cirrhosis and 100% in those with advanced fibrosis; in the 16-week arm SVR4 was 94%, and 100%, respectively [Table]. There were no virologic breakthroughs. Relapse occurred in 3 patients [1 in 16-week and 2 in 12-week arm]. Four of 5 patients (80%) with prior relapse on SOF+RBV achieved SVR4. There was 1 death [12-week arm; not treatment-related]. Treatment was well tolerated - the most common adverse events (AEs) were insomnia (30%), fatigue (26%) and headache (24%). One patient had a grade 3 hemoglobin reduction. There were no discontinuations due to AEs or treatment-related serious AEs. Conclusion: DCV+SOF+RBV for 12 or 16 weeks achieved high SVR4 rates of 88% and 96%, respectively, in HCV GT3-infected patients with advanced fibrosis or cirrhosis.
compensated advanced fibrosis or cirrhosis, and was generally safe and well tolerated.

<table>
<thead>
<tr>
<th></th>
<th>12 weeks</th>
<th>16 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR4*</td>
<td>21 (88)</td>
<td>25 (96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in advanced fibrosisb</td>
<td>6/6 (100)</td>
<td>8/8 (100)</td>
</tr>
<tr>
<td>in cirrhosisb</td>
<td>15/18 (83)</td>
<td>17/18 (94)</td>
</tr>
<tr>
<td>Virologic breakthrough</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Relapse</td>
<td>2 (8)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Deathc</td>
<td>1 (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

* HCV RNA <LLQ_{TO/ND} (next-observation-carried-backward for missing data at posttreatment week 4).

b n/N (%); categories were based on biopsy or FibroScan data.

c Not related to treatment.

Disclosures:

Vincent Leroy - Board Membership: Abbvie, BMS, Gilead; Consulting: Janssen, MSD; Speaking and Teaching: Abbvie, BMS, Gilead, Janssen, MSD

Peter W. Angus - Advisory Committees or Review Panels: Gilead Sciences, BMS; Grant/Research Support: Gilead sciences

Jean-Pierre Bronowicki - Consulting: Merck, Janssen, Boehringer Ingelheim, Gilead, BMS, Novartis, GSK, Merck, Janssen, Boehringer Ingelheim, Gilead, BMS, Bayer, Novartis, GSK, ABBVIE, ABBVIE; Speaking and Teaching: Roche, Merck, Janssen, BMS, Bayer, Roche, Merck, Janssen, BMS, Bayer, ABBVIE

Gregory Dore - Board Membership: Gilead, Abbvie, Bristol-Myers Squibb; Grant/Research Support: Gilead, Merck, Abbvie, Bristol-Myers Squibb; Speaking and Teaching: Gilead, Merck, Abbvie, Bristol-Myers Squibb

Christophe Hezode - Speaking and Teaching: Roche, BMS, MSD, Janssen, abbvie, Gilead

Stephen Planko - Advisory Committees or Review Panels: Roche, Novartis, GIL-ead, Roche, Novartis; Consulting: GILEAD; Speaking and Teaching: JANSSEN

Stanislas Pol - Board Membership: Sanofi, Bristol-Myers-Squibb, Boehringer Ingelheim, Tibotec/Janssen Cilag, Gilead, Glaxo Smith Kline, Roche, MSD, Novartis; Grant/Research Support: Glaxo Smith Kline, Gilead, Roche, MSD, Speaking and Teaching: Sanof, Bristol-Myers-Squibb, Boehringer Ingelheim, Tibotec Janssen Cilag, Gilead, Glaxo Smith Kline, Roche, MSD, Novartis

Fiona McPhee - Employment: Bristol-Myers Squibb

Maria Jesus Jimenez Exposito - Employment: Bristol-Myers Squibb

Alex J. Thompson - Advisory Committees or Review Panels: Gilead, Abbvie, BMS, Merck, Spring-Bank Pharmaceuticals, Arrowhead, Roche, Grant/Research Support: Gilead, Abbvie, BMS, Merck; Speaking and Teaching: Roche, Gilead, Abbvie, BMS

The following people have nothing to disclose: Katherine A. Stuart, Edmund Tse, Rafia Bhore

LB-4

High Virologic Response Rate in Egyptian HCV Genotype-4 Patients Treated with Ravidasvir (PPI-668) and Sofosbuvir: Results of a Large Multicenter Phase 3 Registrational Trial

Gamal Esmat1, Maissa El Raziky1-2, Asmaa Gomaa2, Tamer Elbaz1, Mahmoud M. Abouelkhair1, Alyaa Sabry2, Hadeel Gamal El Deen1, Mohamed K. Ashour1-2, Mohammed Abdel-Hamid4, Ola Nada5, Sherine Helmy4, Hanaa Abdel-Maqui4, Richard Colonno7, Nathaniel Brown7, Eric Ruby7, Pamela Vig7, Imam Waked1; 1Cairo University, Cairo, Egypt; 2Cairo Fatemic Hospital, Cairo, Egypt; 3National Liver Institute, Cairo, Egypt; 4Minia University, Cairo, Egypt; 5 Ain Shams University, Cairo, Egypt; 6Pharma Therapeutics, Alexandria, Egypt; 7Presidio Pharmaceuticals, San Francisco, CA

BACKGROUND: Egypt has the highest prevalence of hepatitis C infection in the world, of which 90% is due to HCV genotype-4 (gt-4). Increasing HCV-related morbidity in Egypt presents an urgent need for highly curative, safe and affordable therapies. We report results from a Phase 3 registrational trial in Egyptian HCV gt-4 patients, assessing the combination of ravidasvir (RDV), a pan-genotypic HCV NS5A inhibitor, and sofosbuvir (SOF), a nucleotide HCV NS5B polymerase inhibitor, with or without ribavirin (RBV). **METHODS:** Key inclusion criteria were age 18-65 yr, HCV gt-4 infection, serum HCV RNA >4 log10 IU/mL, and absence of decompensated cirrhosis or other causes of liver disease. Patients were enrolled into 3 groups: treatment-naive non-cirrhotic and cirrhotic, by FibroScan & Fib-4 score (Group 1); interferon (IFN)-experienced non-cirrhotic (Group 2); and IFN-experienced cirrhotic (Group 3). Groups 1 and 2 were treated with RDV 200 mg QD + SOF 400 mg QD for 12 wk, randomized 1:1 to additional RBV (weight-based) or no RBV. Group 3 patients all received RDV+SOF+RBV and were randomized 1:1 to 12 wk vs. 16 wk of treatment. The primary endpoint is sustained virologic response (SVR), defined as serum HCV RNA below the lower limit of detection (LLD <12 IU/mL by the Abbott Real-Time™ PCR assay) at 12 wk post-treatment (SVR12). **RESULTS:** This study is fully enrolled with 300 patients (150 in Group 1, 80 in Group 2, and 70 in Group 3); 284 patients had completed treatment at the time of this abstract. Study treatment has been generally well tolerated, with one serious adverse event possibly attributed to study drug (transient episode of symptomatic bradycardia). The most common adverse events are headache and fatigue. HCV RNA decreased by ~6 logs in all groups by Wk 1, with 94% of patients HCV RNA undetectable by Wk 4. Of the 265 patients who have reached 4 wk post-treatment, 262 (99%) had RNA <LLD (SVR4); also, 236 of 242 (98%) have achieved SVR8 and 176 of 182 (97%) have achieved SVR12 to date. The addition of RBV did not improve response. The 6 treatment failures are all cirrhotic patients, one patient had only 8 weeks of treatment due to the bradycardia episode, and 5 patients relapsed after completing treatment. None of the non-cirrhotic patients have experienced a virologic relapse. Near-final SVR4, SVR8 and SVR12 data will be presented during the meeting. **Conclusions:** To our knowledge, this is the largest IFN-free clinical trial in HCV gt-4 patients. Treatment with RDV+SOF+RBV has been well-tolerated and shows high sustained response rates in a large population of Egyptian patients, regardless of previous treatment status or underlying cirrhosis.

Disclosures:

Sherine Helmy - Board Membership: Presidio Pharmaceuticals; Stock Shareholder: Pharo Pharmaceuticals

Hanaa Abdel-Maqui - Employment: Pharo Pharmaceuticals

Richard Colonno - Employment: Presidio Pharmaceuticals

Nathaniel Brown - Consulting: Presidio Pharmaceuticals; Employment: Novira Therapeutics

Eric Ruby - Employment: Presidio Pharmaceuticals

Pamela Vig - Stock Shareholder: Presidio Pharmaceuticals Inc

Imam Waked - Advisory Committees or Review Panels: Janssen; Consulting: Hoffman L Roche, Merck, BMS, Gilead, AbbVie

The following people have nothing to disclose: Gamal Esmat, Maissa El Raziky, Asmaa Gomaa, Tamer Elbaz, Mahmoud M. Abouelkhair, Alyaa Sabry, Hadeel Gamal El Deen, Mohamed K. Ashour, Mohammed Abdel-Hamid, Ola Nada
Incidence and Determinants of Denial of DAA Treatment for Chronic HCV Infection by Insurance Type During the First 6 Months of the Modern HCV Treatment Era

Vincent Lo Re1, Charitha Gowda1, Paul N. Urick2, Josh Halladay2, Amanda Binkley1, Dena M. Carbonari1, Kathryn Battista2, Cassandra Peleckis2, Jody Gilmore1, Jason Roy1, K. Rajender Reddy1, Jay Kostman2; 1Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; 2Burmans Specialty Pharmacy, Media, PA; 3Jonathan lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA

Background: The high costs of direct-acting antiviral (DAA) agents to treat chronic HCV infection have resulted in denials and delays in the receipt of these therapies. We sought to: 1) determine the incidence and determinants of denial of a DAA prescription among US chronic HCV-infected patients, according to type of insurance (US Medicaid, US Medicare, commercial insurance), and 2) ascertain the time to DAA prescription fill.

Methods: We conducted a prospective cohort study among chronic HCV-infected patients who had a DAA prescription submitted between November 1, 2014 and April 30, 2015 to two specialty pharmacies (Burmans Specialty Pharmacy and Penn Presbyterian Medical Center) serving PA, NJ, DE, and MD. The incidence of absolute denial of the prescription, defined as no fill (even after appeal), was calculated for the overall cohort and by insurance type. Multivariable logistic regression was used to determine adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for associations between patient characteristics and absolute denial. Hypothesized determinants of absolute denial included insurance type, absence of cirrhosis, and HIV coinfection. For all approved prescriptions, we determined the time to fill, defined as the interval between the date of prescription and date of approval, by type of insurance.

Results: Among 2,350 patients prescribed a DAA regimen (504 covered by Medicaid; 810 by Medicare; 1,036 by commercial insurance), 375 (16.0%) received an absolute denial (genotype 1: 15.2%; genotype 2: 17.7%; genotype 3: 31.6%; p<0.001). The most common reasons for absolute denial were insufficient information to assess medical need (133 [35.5%]), lack of medical necessity (125 [33.3%]), and positive alcohol/drug screen (15 [4.0%]). Prescriptions were more commonly denied for patients covered by Medicaid (232 [46.0%]) than by Medicare (40 [4.9%]; p<0.001) or commercial insurance (103 [9.9%]; p<0.001). Among the overall cohort, Medicaid coverage [OR=8.97 [6.46-12.44]], absence of cirrhosis [OR=3.70 [2.48-5.52]], and HIV coinfection [OR=3.31 [1.28-8.56]] were independently associated with absolute denial. The median time to DAA prescription fill was longer for persons with Medicaid (23 days) than with Medicare (14 days; p<0.001) or commercial insurance (14 days; p<0.001).

Conclusions: Among chronic HCV-infected patients prescribed DAA therapy, 16% were denied by their insurance carrier. For Medicaid patients, 46% were denied DAA therapy, and they had a longer time to fill than those with other insurance. Medicaid programs should seek to increase access to DAA agents for chronic HCV-infected patients.

Disclosures:
Dena M. Carbonari - Grant/Research Support: AstraZeneca
K. Rajender Reddy - Advisory Committees or Review Panels: Merck, Janssen, Vertex, Gilead, BMS, Abbvie, Grant/Research Support: Merck, BMS, Ikaria, Janssen, AbbVie
Jay Kostman - Consulting: Gilead
The following people have nothing to disclose: Vincent Lo Re, Charitha Gowda, Paul N. Urick, Josh Halladay, Amanda Binkley, Kathryn Battista, Cassandra Peleckis, Jody Gilmore, Jason Roy

Emricasan (IDN-6556) administered orally for 28 days lowers portal pressure in patients with compensated cirrhosis and severe portal hypertension

Guadalupe Garcia-Tsao1,2, Michael Fuchs3, Mitchell L. Shiffman4, Jean L. Chan5, Mark Morris5, Mason Yamashita5, Alfred P. Spada2, David Hagerty2, Jaime Bosch5; 1VA-CT Healthcare System, New Haven, CT; 2Yale University, New Haven, CT; 3McGuire DVAMC, Richmond, VA; 4Liver Institute of Virginia, Richmond, VA; 5Conatus Pharmaceuticals, San Diego, CA; 6Liver Unit, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain

Caspases play a central role in apoptosis and inflammation. They produce hemodynamically-active, pro-inflammatory microparticles that appear to contribute to the vasodilatation that maintains and enhances portal hypertension in cirrhosis. Emricasan, a pan-caspase inhibitor, has been shown to lower portal pressure and improve survival in a murine model of portal hypertension. The aim of this study was to assess whether emricasan could lower portal pressure in patients with compensated cirrhosis.

Methods: This proof-of-concept, multicenter, open-label study enrolled 23 subjects with compensated cirrhosis and portal hypertension (hepatic venous pressure gradient [HVPG] >5 mmHg) at 9 U.S. sites. Emricasan (25 mg) was given orally twice a day for 28 days. HVPG measurements were standardized and a single expert read all HVPG tracings.

Results: Median age of subjects was 59 (range 49-80) and 70% were male. Cirrhosis etiologies were mainly NASH and HCV, with 20 (87%) subjects being Child A and having median MELD score of 8 (range 6-15). 22 completed the study. Overall, there were no significant differences in median HVPG before and after emricasan (13.5 vs 13.0 mmHg, respectively). However, when patients were stratified by the recognized HVPG therapeutic threshold of 12 mmHg (indicative of more severe portal hypertension), a significant (p<0.003) decrease in HVPG by 17.2% was noted only in those with an HVPG ≥12 mmHg, who had a mean (SD) decrease of 3.7 (4.0) mmHg. Notably, 4/12 had a ≥20% decrease; 8/12 had a ≥10% decrease; and in 2/12 the HVPG decreased below 12 mmHg. Ten patients with HVPG <12 mmHg had a non-significant (p=0.12) mean (SD) increase of 1.9 (3.2) mmHg. Sensitivity analysis using an HVPG cutoff of 10 mmHg yielded similar results. There were no significant changes in blood pressure or heart rate. AST and ALT levels decreased significantly in the entire group and in those with an HVPG ≥12 mmHg. Overall, serum levels of cCK18 and caspase 3/7 (markers of microparticles and apoptosis, respectively) decreased significantly. Emricasan was well-tolerated with 1 subject discontinuing the study early for non-serious adverse events. One subject had 3 SAEs 10 days after the last emricasan dose, assessed as unrelated to treatment.

Conclusion: Emricasan administered orally for 28 days was associated with a significant decrease in portal pressure in patients with compensated cirrhosis and severe portal hypertension. Although a hemodynamic mechanism cannot be ruled out, concomitant decreases in AST/ALT suggest an intrahepatic anti-inflammatory effect. Potential additional long-term effects due to microvascular remodeling will require further investigation.

Disclosures:
Guadalupe Garcia-Tsao - Advisory Committees or Review Panels: Abbvie, Fibrogen
Mitchell L. Shiffman - Advisory Committees or Review Panels: Merck, Gilead, Boehringer-Ingelheim, Bristol-Myers-Squibb, Abbvie, Janssen, Ascension; Consulting: Roche/Genentech; Grant/Research Support: Merck, Gilead, Boehringer-Ingelheim, Bristol-Myers-Squibb, Abbvie, Beckman-Coulter, Achillion, Lumena, Intercept, Novartis, Gen-Probe; Speaking and Teaching: Roche/Genentech, Merck, Gilead, Abbvie, Janssen, Bayer
Jean L. Chan - Employment: Conatus Pharmaceuticals
Microfluidic liver cultures as preclinical tool for the study of hepatitis B and C virus as well as malaria

Ana M. Ortega-Prieto1, Sann Nu Wai1, Emma M. Large2, Marion Lussignol3, Fiona Angrisano4, Andrew M. Blagborough4, Gema Vizcay-Barrena5, David Hughes2, Graham Cooke1, Mark R. Thursz1, Roland Fleck5, Jake Baum4, Maria Teresa Catanese3, Marcus Dorner1; 1Medicine, Imperial College London, London, United Kingdom; 2CN Bio Innovations Ltd, Welwyn Garden City, United Kingdom; 3Infectious Diseases, King’s College London, London, United Kingdom; 4Life Sciences, Imperial College London, London, United Kingdom; 5Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom

Liver-tropic pathogens including hepatitis B virus (HBV), hepatitis C virus (HCV) and malaria are a major health concern with more than 620 million people infected worldwide. The rapid dedifferentiation of primary human hepatocytes in 2D cell culture poses significant limitations to study host-pathogen interactions and to develop novel therapies against these infectious diseases in physiological settings. Here, we describe a novel 3D microfluidic primary hepatocyte culture system permissive to HCV, HBV and malaria, which, in contrast to all other available model systems, maintains the hepatic phenotype for at least 40 days without alteration of hepatic metabolism, cell viability or degree of differentiation. Cells form functional microtissues including bile canaliculi and tight junctions. We demonstrate, for the first time, that HBV patient-derived viral isolates can successfully launch infection and maintain robust levels of replication, resulting in the production of HBV cccDNA as well as infectious progeny virus. Additionally, 3D hepatocyte cultures become susceptible to non-JFH1-derived HCV including genotype 1a patient samples. We demonstrate proof of concept data for the evaluation of novel direct-acting antivirals against HCV, including Ledipasvir and Sofosbuvir for genotypes 1 and 3 as well as Tenofovir alafenamide for HBeAg-positive and –negative HBV isolates. HBV infection induces a pro-angiogenic signature in infected hepatocytes, which is suppressed when co-culturing primary hepatocytes and Kupffer cells. Interestingly, we identify a cellular factor induced by HBV infection, which may be responsible for inactivation of Kupffer cells and the resulting lack of pro-inflammatory responses. Finally, using hepatocyte and erythrocyte co-cultures we show that malaria sporozoites can successfully invade hepatocytes, differentiate to merozoites and transition from liver to blood stage. This platform offers the unique opportunity to evaluate novel drug candidates targeting HBV cccDNA maintenance as well as the malaria liver stage, dissect host/pathogen interactions in multicellular immune networks as well as serve as a personalised medicine platform for the prediction of treatment outcomes for HCV and HBV.
Background & aims. Peginterferon (PegIFN) therapy leads to response in only a subset of chronic hepatitis B (CHB) patients at the cost of significant side-effects. The identification of host genetic determinants of response are therefore in demand. Methods. In this investigator-initiated multicentre two-stage genome-wide association study, CHB patients treated with PegIFN for at least 12 weeks were included in the discovery cohort. Here we report on the first results of the replication cohort. Identification of novel genetic determinants of PegIFN treatment response has the potential to functional cure of CHB.

Results. Of 1085 patients in the discovery cohort, 778 (72%) were male, and mean age was 38.8 (±10.9) years. Patients were Caucasian in 35% (n=375), Asian in 62% (n=671) and African in 3% (n=35). Of Caucasian and Asian patients, 27% and 66% were HBsAg-positive, respectively. In total, 287 (27%) patients achieved the primary response (17% with HBsAg loss), of which 60 (21%) were Caucasian and 217 (76%) Asian. Adjusted for age, gender and 4 ancestry principal components, SNP rs16937012 located upstream of the NCOA2 gene region on chromosome 8 showed a suggestive association (OR=3.99, p=1.4x10^-6, minor allele frequency 0.125) in Caucasians. Five other SNPs in this gene region had p-value less than 1.0x10^-4, including coding SNP rs1460680 in NCOA2. The association remained after additional adjustment for baseline HBsAg status, HBV DNA, ALT and the duration of IFN. These associations did not replicate in Asians (p>0.05 for all SNPs). In Asian patients, 2 SNPs showed a suggestive association (p-value <1.0x10^-4), which remained after multivariate adjustment. Conclusions: A novel protein coding gene was identified as a predictor of IFN treatment response in CHB. This gene belongs to the nuclear hormone receptor superfamily which plays an important role in cell growth, development, and homeostasis by controlling expression of specific genes. This gene, and others, will be further investigated in a panel of imputed 1000 Genomes SNPs and in the replication cohort. Identification of novel genetic determinants for IFN treatment response has the potential to improve our understanding of new therapeutic options leading to functional cure of CHB.
LB-9

ARC-520 produces deep and durable knockdown of viral antigens and DNA in a phase II study in patients with chronic hepatitis B

Man-Fung Yuen1, Henry Lik-Yuen Chan2, Sze Hang Kevin Liu1, Bruce Given3, Thomas Schluep4, James Hamilton5, Ching-Lung Lai1, Stephen Locarnini6, Johnson Y. Lau7, Carlo Ferrari8, Robert Gish7,8, 1The University of Hong Kong, Hong Kong, China; 2The Chinese University of Hong Kong, Hong Kong, China; 3Arrowhead Research Corp., Pasadena, CA; 4Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC, Australia; 5Hong Kong Polytechnic University, Hong Kong, China; 6University of Parma, Parma, Italy; 7Stanford University, Palo Alto, CA; 8Hepatitis B Foundation, Doylestown, PA

Chronic hepatitis B (CHB) has become an important target for drug development. ARC-520 (ARC), the first RNA interference-based drug to reach patients (pts), targets ccc-DNA-derived mRNA; herein we report results in CHB. **Methods:** 58 CHB pts (48 ARC, 10 placebo (PL), mean age 41 yrs (range 23-59) were included. 38 pts were HBeAg- and 20 HBeAg-pos. At entry, 32 of 38 HBeAg-neg and 14 of 20 HBeAg-pos had taken entecavir (ETV) for mean of 5 yrs (range 2-8) and were on ETV throughout the study. 12 treatment naive pts (6 HBeAg-neg, 6 HBeAg-pos) started on ETV during the trial. All pts received a single dose IV of ARC or PL (6 HBeAg-pos received a divided dose of ARC separated by 2 wks) and had viral parameter knockdown (KD) measured over 85 days [qHBsAg, HB core-related antigen (qHBcrAg) and viral DNA in all, qHBeAg in HBeAg-pos]. Doses were 1.4 mg/kg in HBeAg-neg. All HBeAg-pos received 4 mg/kg. 15 pts are continuing in follow-up. **Results:** ARC therapy was well tolerated - 23% reported a mild or mod adverse event (AE) with no AE rated serious, severe, drug-related or causing withdrawal from the trial. Viral DNA was below level of quantitation in all chronic ETV pts at study entry. Naïve pts reduced viral DNA up to 4.3 log (mean 2.2 log) after ARC and ETV. ARC reduced viral antigens with qHBeAg best KD of 1.7 log (mean max 1.2 log) following a single 4 mg/kg dose. In naïve pts, best qHBsAg KD of 1.9 log (mean max 1.1 log) in HBeAg-pos and 0.7 log (mean max 0.2 log) in HBeAg-neg were observed. qHBcrAg showed a dose response in HBeAg-neg with best KD at 1 mg/kg of 0.18 log (mean max 0.15 log) and 1.1 log (mean max 0.9 log) with 4 mg/kg. HBeAg-pos showed best KD of 1.1 log (mean max 0.92 log). The qHBsAg dose response was less deep in chronic ETV pts with best observed reduction of 0.3 log (mean max 0.2 log) observed at 1 mg/kg vs 0.5 log (mean max 0.4 log) at 4 mg/kg in HBeAg-neg. Best qHBsAg KD in chronic ETV treated HBeAg-pos was 0.7 log (mean max 0.3 log). Divided doses at 4 mg/kg did not increase antigen KD. Duration of qHBsAg KD was typically 8 wks with 2 distinct KD patterns of qHBsAg seen: an immediate, direct ARC antiviral effect (~70% of pts) and a delayed response several weeks after treatment (~30% of pts). **Conclusions:** 1) These findings are consistent with more cccDNA-driven antigen production in HBeAg-pos. 2) ARC was well tolerated 3) ARC effectively inhibited cccDNA-derived mRNA with protein KD up to 1.9 logs (99%) observed 4) These variations in viral protein KD are consistent with ARC data in chimps and previously reported chronic ETV reductions in pts for cccDNA 5) Chronic ARC studies aimed at producing HBsAg seroclearance are underway.

Disclosures:

Man-Fung Yuen - Advisory Committees or Review Panels: GlaxoSmithKline, Bristol-Myers Squibb, Pfizer, GlaxoSmithKline, Bristol-Myers Squibb, Pfizer, GlaxoSmithKline, Bristol-Myers Squibb, Pfizer, GlaxoSmithKline, Bristol-Myers Squibb, Pfizer, Grant/Research Support: Roche, Bristol-Myers Squibb, GlaxoSmithKline, Gilead Science, Roche, Bristol-Myers Squibb, GlaxoSmithKline, Gilead Science

Henry Lik-Yuen Chan - Advisory Committees or Review Panels: Gilead, MSD, Bristol-Myers Squibb, Roche, Novartis Pharmaceutical, Abbvie; Speaking and Teaching: Echosens

Bruce Given - Employment: Arrowhead Research Corp; Stock Shareholder: Icon plc

Thomas Schluep - Employment: Arrowhead Research Corp

James Hamilton - Employment: Arrowhead Research Corp

Ching-Lung Lai - Advisory Committees or Review Panels: Bristol-Myers Squibb, Gilead Sciences Inc; Consulting: Bristol-Myers Squibb, Gilead Sciences, Inc; Speaking and Teaching: Bristol-Myers Squibb, Gilead Sciences, Inc

Stephen Locarnini - Consulting: Gilead, Arrowhead; Employment: Melbourne Health

Johnson Y. Lau - Advisory Committees or Review Panels: Arrowhead Research; Management Position: Kinex Pharmaceuticals, Avalon BioMedical Management; Speaking and Teaching: Hong Kong Polytechnic University, University of Hong Kong, Southwestern Hospital

Carlo Ferrari - Advisory Committees or Review Panels: Gilead, Roche, Abbvie, BMS, Merck, Arrowhead; Grant/Research Support: Gilead, Roche, Janssen

Robert Gish - Advisory Committees or Review Panels: Gilead, AbbVie, Arrowhead; Consulting: Eiger, Isis, Genentech; Speaking and Teaching: Gilead, AbbVie; Stock Shareholder: Arrowhead

The following people have nothing to disclose: Sze Hang Kevin Liu

LB-10

Phase 1b Efficacy and Safety of NVR 3-778, a First-In-Class HBV Core Inhibitor, in HBeAg-Positive Patients with Chronic HBV Infection

Man-Fung Yuen1, Dong Joon Kim2, Frank Weilert2, Henry Lik-Yuen Chan2, Jacob P. Lalezar2, Seong Gyu Hwang3, Tuan T. Nguyen3, Sandy Liaw4, Nathaniel Brown4, Klaus Klump5, Lalo Flores1, George D. Hartman1, Edward J. Gane6; 1Novira Therapeutics, Inc., Doylestown, PA; 2Auckland Clinical Studies, Auckland, New Zealand; 3Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong; 4Chuncheon Sacred Heart Hospital, Hallym University, Gangwon-do, Korea (the Republic of); 5Waikato Hospital, Hamilton, New Zealand; 6Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, Hong Kong; 7Quest Clinical Research, San Francisco, CA; 8CHA Bundang Medical Center, Gyeonggi-do, Korea (the Republic of); 9Research and Education, Inc., San Diego, CA

Background: Current therapies for chronic hepatitis B (CHB) can suppress HBV replication but long-term therapy is required in most patients. HBV Core (capsid) protein plays multiple roles in HBV persistence. NVR 3-778 is an HBV core inhibitor which can potentially inhibit viral assembly, HBV genome replication, cccDNA replenishment, and hepatic reinfection cycles. We report clinical proof-of-concept data for NVR 3-778 from a multicenter Phase 1b trial in patients with CHB. **Methods:** Safety and efficacy were assessed in 4 dosing cohorts of adults with chronic HBV infection. Patients were 18-65 yrs., predominantly male, and HBeAg-positive with serum HBV DNA > 20,000 IU/mL. ALT levels could be normal or elevated to less than 7 times upper limit of normal. Patients were randomized to NVR 3-778 capsules (10 patients/cohort in first 2 cohorts, 8/cohort in last 2 cohorts) or placebo (2 patients/cohort) for 28 days. The first 3 cohorts received NVR 3-778 doses of 100, 200, or 400 mg QD, and the 4th cohort received 600 mg BD. Safety evaluations included adverse events (AEs) and safety-related clinical labs. **Results:** A total of 44 patients were enrolled in the 4 cohorts; 36 received active NVR 3-778 treatment. Safety and tolerability of NVR 3-778 were satisfactory for all cohorts, with no treatment-related discontinuations or serious adverse
events (SAEs). AEs and lab abnormalities were generally mild and not related to study drug. A patient in the 100 mg cohort developed a rash involving the hands and feet that was considered to be serious. No other study patients developed a significant rash. Small HBV DNA reductions were apparent with 200 mg and 400 mg QD dose cohorts. With tripling of the daily dose to 1200 mg (600 mg BD) the mean 28-day reduction in serum HBV DNA levels increased substantially to 1.72 log10 (range 1.06-3.71 log10 IU/mL). PK results indicated multi-micromolar concentrations of NVR 3-778 supporting QD or BD dosing, with dose-related increases in drug levels. The study is advancing to evaluation of a combination of NVR 3-778 and peg-interferon. A higher dose will be tested to define a maximal-effect dose for NVR 3-778, and a nucleoside combination regimen will be tested later. **Conclusions:** NVR 3-778 was well-tolerated in patients with CHB. 600 mg BD dosing achieved significant reductions in HBV DNA. When used alone or in combination with current HBV antivirals, NVR 3-778 may contribute substantial efficacy by unique Core-related mechanisms, toward a goal of increased durable response rates in HBV patients.

Disclosures:

Henry Liik/Yuen Chan - Advisory Committees or Review Panels: Gilead, MSD, Bristol-Myers Squibb, Roche, Novartis Pharmaceutical, Abbvie; Speaking and Teaching: Echosens

Sandy Liow - Employment: Novira Therapeutics

Nathaniel Brown - Consulting: Presidio Pharmaceuticals; Employment: Novira Therapeutics

Klaus Klumpp - Board Membership: Riboscience LLC; Employment: Novira Therapeutics

Lalo Flores - Employment: Novira Therapeutics

George D. Hartman - Management Position: Novira Therapeutics

Edward J. Gane - Advisory Committees or Review Panels: Novira, AbbVie, Janssen, Gilead Sciences, Janssen, Cilag, Achillion, Merck, Tekmira; Speaking and Teaching: AbbVie; Gilead Sciences, Merck

The following people have nothing to disclose: Man-Fung Yuen, Dong Joon Kim, Frank Weillert, Jacob P. Lalezari, Seong Gyu Hwang, Tuan T. Nguyen

LB-11

Phase I/IIa study of TT-034, a DNA-directed RNA interference agent (ddRNAi) delivered as a single administration for the treatment of subjects with chronic hepatitis C virus (HCV)

David Suhy1,2, **Keyur Patel**2, **Georgina Killfoil**3, **David L. Wyles**4, **Susanna Naggie**5, **Eric Lawitz**6, **Per Lindell**1\n
Background: Designed to treat HCV, TT-034 is an RNAi therapeutic comprised of a recombinant DNA that is delivered intravenously using an Adeno-Associated Virus capsid (AAV8) for transduction of hepatocytes. Once inside, TT-034 uses the cell’s transcriptional machinery to drive long term expression of three independent short hairpin RNAs (shRNAs) to simultaneously target three well-conserved regions of the HCV RNA genome, including the 5’ UTR (shRNA19 and shRNA22). In non-human primate (NHP) studies, clinically relevant doses of TT-034 transduced nearly 100% of hepatocytes and resulted in persistent shRNA expression for 180 days (the length of the study). Intended as a one-time treatment, the dosing with TT-034 is the first time a non-withdrawable RNAi therapeutic has been used in man. **Methods:** This ongoing, first-in-man, Phase I/IIa open label dose-escalating trial is enrolling chronic HCV genotype 1 patients without cirrhosis. Patients receive a single intravenous infusion of TT-034 at one of 5 dose levels. A liver biopsy, collected 21 days post dosing, is used to assess hepatic TT-034 DNA levels and shRNA expression.

Results: To date, seven subjects have received a single dose of TT-034 at either 4.00E10, 1.25E11, or 4.00E11 vg/kg. Additional subjects will be enrolled in dose cohorts of 1.25E12 or 4.00E12 vg/kg. There have been no treatment-related SAEs in the study to date. Once administered, TT-034 clears from serum within the first week post dosing. No long term TT-034 shedding has been detected in the urine, stool, semen, or sputum. TT-034 DNA levels in liver biopsies are measured by QPCR and are similar to those reported in NHP models. Patients administered the lowest dose resulted in 0.01 or 0.02 copies of the TT-034 genome per cell, the equivalent of 1 or 2 % hepatocyte transduction. At a dose of 1.25E11 vg/kg, substantially higher levels were detected in the hepatic tissues from the three subjects, yielding 0.48, 3.65 and 10.44 copies of TT-034 DNA per cell respectively. The first subject dosed with 4.00E11 vg/kg demonstrated 17.74 copies per cell, indicating that a significant portion of the hepatocytes may have been transduced. QPCR analyses of RNA isolated from the biopsies confirmed concomitant, dose dependent expression of anti-HCV shRNAs. Copy numbers of shRNA6, shRNA19 and shRNA22 were measured at 66, 2032, and 99 copies per cell respectively in the subject dosed with 4.00E11 vg/kg.

Conclusion: Initial doses of TT-034 are well tolerated in human subjects infected with HCV. At higher doses, substantial portions of hepatocytes are transduced and result in concurrent dose-dependent expression of anti-HCV shRNAs.

Disclosures:

David Suhy - Advisory Committees or Review Panels: Regen BioPharma; Management Position: Benitec Biopharma

Keyur Patel - Advisory Committees or Review Panels: Gilead, BMS; Consulting: Benitec, Nilto Denko

Georgina Killfoil - Employment: Benitec Biopharma

David L. Wyles - Advisory Committees or Review Panels: Bristol Myers Squibb, Janssen, Merck; Grant/Research Support: Gilead, Merck, Bristol Myers Squibb, AbbVie, Tacere

Susanna Naggie - Advisory Committees or Review Panels: BMS, Gilead, AbbVie, Merck; Grant/Research Support: Gilead, AbbVie, BMS, Janssen, Merck, Achillion

Eric Lawitz - Advisory Committees or Review Panels: AbbVie, Achillion Pharmaceuticals, Regulus, Theravance, Enanta, Idenix Pharmaceuticals, Janssen, Merck & Co, Novartis, Gilead; Grant/Research Support: AbbVie, Achillion Pharmaceuticals, Boehringer Ingelheim, BristolMyers Squibb, Gilead Sciences, GlaxoSmithKline, Idenix Pharmaceuticals, Intercept Pharmaceuticals, Janssen, Merck & Co, Novartis, Nilto Denko, Theravance, Salix, Enanta; Speaking and Teaching: Gilead, Janssen, AbbVie, Bristol Meyers Squibb

Per Lindell - Consulting: Benitec Ltd, Tacere Ltd; Employment: Novadigm Consulting Group

The following people have nothing to disclose: Stephen Bradley

LB-12

C-SWIFT Retreatment (Part B): 12 weeks of Elbasvir/Grazoprevir with Sofosbuvir and Ribavirin Successfully Treated GT1-infected Subjects who Failed Short-Duration All-Oral Therapy

Eric Lawitz2, **Fred Poordad**2, **Julio A. Gutierrez**2, **Jennifer T. Wells**2, **Carmen E. Landaverde**2, **Joseph R. Reiling**1, **Jerry J. Li**3, **Huehchung Huang**1, **Michael Robertson**1, **Janice Wahl**1, **Elav Barr**1, **Barbara A. Haber**1, **Merck & Co., Inc., Kenilworth, NJ; 2Texas Liver Institute, San Antonio, TX**

PURPOSE: Therapies to retreat patients who have failed prior all-oral, direct-acting antiviral (DAA) therapies have not been defined. The purpose of this study was to assess a retreatment regimen for patients who had failed therapy with elbasvir/grazoprevir (EBR/GZR, a potent NS3/4A protease inhibitor + NS5A inhibitor fixed-dose combination) + sofosbuvir (SOF).
METHOD: G1-infected patients who relapsed after therapy with EBR/GZR + SOF for 4, 6 or 8 weeks were offered retreatment with 12 weeks of EBR/GZR + SOF + ribavirin (RBV). The primary endpoint was the proportion of patients achieving HCV RNA<15 IU/mL 12 weeks after end of treatment (SVR12). Population sequencing was used to detect resistance-associated variants (RAVs) in NS3, NS5A and NS5B. RESULTS: Of 29 eligible patients, 25 enrolled (17/20, 7/8 and 1/1 who failed prior, 4, 6 or 8 weeks of treatment respectively): 88% (22/25) with G1a infection, 20% (5/25) with cirrhosis; baseline viral load at retreatment mean 6.6 log10 IU/mL (range: 4.3-7.4 log10 IU/mL). Of the 22 G1a patients, 12 (55%), 15 (68%) or 0% failed with NS5A RAVs, NS3 RAVs or NS5B RAVs, respectively, in Part A. At the start of retreatment, 45% (10/22), 59% (13/22) or 0% of G1a patients had NS5A RAVs, NS3 RAVs, or NS5B RAVs, respectively. NS5A RAVs (>5-fold potency shift to EBR shown by underlining) included M28T (2/10), M28V (2/10), G30H/K/R (5/10), L31M (1/10), Y93H/N (3/10) while NS3 RAVs included V36M (1/22), Q80K (12/22), S122G (2/22), D168E (1/22); >5-fold resistant to GZR, and I170V (1/22). No RAVs were present in the 3 G1b-infected patients. Two patients were lost to follow-up after Treatment Day 3 and Week 4 at which time viral load was 363 IU/mL and undetectable, respectively. All patients who completed treatment (100%, 23/23) achieved SVR4. Final SVR12 results will be presented. No patient discontinued due to AE. No laboratory abnormalities. The single AE occurring in >10% of patients was fatigue (12%). CONCLUSION: In a population of patients who failed short-duration therapy with DAAs and were enriched for G1a infection and presence of NS3 and NS5A RAVs, including class 2 RAVs, a 12 week regimen of GZR/EBR + SOF + RBV showed strong antiviral activity and high SVR4 rates.

<table>
<thead>
<tr>
<th>RAV Class present at start of retreatment</th>
<th>% (n) with HCV RNA <15 IU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No RAVs (n=13)</td>
<td>92% (12/13)</td>
</tr>
<tr>
<td>NS3 or NS5A RAVs (n=9)</td>
<td>67% (6/9)</td>
</tr>
<tr>
<td>NS5A and NS5B RAVs (n=3)</td>
<td>100% (3/3)</td>
</tr>
</tbody>
</table>

1: RAVs excluding Q80K; 2: one LTFU after TW4; 3: one LTFU at day 3

Disclosures:
Eric Lavitz - Advisory Committees or Review Panels: AbbVie, Achillion Pharmaceuticals, Regulus, Theravance, Enanta, Idenix Pharmaceuticals, Janssen, Merck & Co, Novartis, Gilead; Grant/Research Support: AbbVie, Achillion Pharmaceuticals, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, GlaxoSmith-Kline, Idenix Pharmaceuticals, Intercept Pharmaceuticals, Janssen, Novartis, Nilto Denko, Theravance, Idenix, Enanta; Speaking and Teaching: Gilde, Janssen, AbbVie, Bristol Meyers Squibb
Fred Poodrad - Advisory Committees or Review Panels: Abbott/AbbVie, Achillion, BMS, Inhibitex, Boehringer Ingelheim, Pfizer, Genentech, Idenix, Gilead, Merck, Vertex, Idenix, Janssen, Novartis; Grant/Research Support: Abbvie, Idenix, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Pharmasset, Vertex, Idenix, Sibalix, Idenix, Janssen, Novartis
Jerry J. Li - Employment: Merck & Co, Inc
Hsueh-cheng Huang - Employment: Merck
Michael Robertson - Employment: Merck; Stock Shareholder: Merck
Janice Wahl - Employment: Merck & Co
Eliai Barr - Employment: Merck; Stock Shareholder: Merck
Barbara A. Haber - Employment: Merck

The following people have nothing to disclose: Julio A. Gutierrez, Jennifer T. Wells, Carmen E. Landaverde, Joseph R. Keeling

LB-13 Sofosbuvir/Velpatasvir Fixed Dose Combination For The Treatment Of HCV In Patients With Decompensated Liver Disease: The Phase 3 ASTRAL-4 Study

Michael R. Charlton1, Jacqueline G. O’Leary2, Natalie H. Bzowej3, Andrew J. Muir4, Kevin M. Korenblat5, Jonathan M. Fenkel6, K. Rajender Reddy7, Eric Lawitz8, Thomas D. Schiano9, Lewis W. Teperman10, Robert J. Fontana11, Eugene R. Schiff12, Michael W. Fried13, Brian Doehle14, Di An14, John McNally14, Anu Osinusi14, Diana M. Brainard14, John G. McHutchison14, Robert S. Brown15, Michael P. Curry16, Intermountain Medical Center, Salt lake city, UT; 2Baylor University Medical Center, Dallas, TX; 3Ochsner Medical Center, New Orleans, LA; 4Duke University, Durham, NC; 5Washington University School of Medicine, Saint Louis, MO; 6Thomas Jefferson University, Philadelphia, PA; 7University of Pennsylvania School of Medicine, Philadelphia, PA; 8Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX; 9Mount Sinai Hospital, New York, NY; 10New York University School of Medicine, New York, NY; 11University of Michigan, Ann Arbor, MI; 12University of Miami, Miami, FL; 13University of North Carolina at Chapel Hill / UNC School of Medicine, Chapel Hill, NC; 14Gilead Sciences Inc., Foster City, CA; 15Columbia University Medical Center/ New York Presbyterian, New York, NY; 16Beth Israel Deaconess Medical Center, Boston, MA

Introduction: HCV-infected patients with decompensated liver disease have significant morbidity and mortality with limited HCV treatment options. Velpatasvir (VEL, formerly GS-5816), is a pan-genotypic HCV NS5A inhibitor that has demonstrated high SVR rates in patients with genotypes 1-6 HCV infection when used in combination with sofosbuvir (SOF). This Phase 3 study evaluated the safety and efficacy of the fixed dose combination (FDC) of SOF/VEL in HCV infected patients with decompensated liver disease. Methods: Genotype (GT) 1, 2, 3, 4 or 6 HCV infected patients with CPT-B cirrhosis were randomized 1:1:1 to receive SOF/VEL (400 mg /100 mg) daily for 12 weeks, SOF/VEL + weight based RBV for 12 weeks, or SOF/VEL for 24 weeks. Patients with prior liver transplant or hepatocellular carcinoma were excluded. Results: Of the 267 patients randomized and treated, the majority were treatment experienced (55%), white (90%), males (70%), with IL28B non-CC (77%). Patients had genotype 1b>78% overall, 60% 1a, 2 (4.5%), 3 (15%), 4 (3%) or 6 (<1%) HCV infection. The median CPT score was 8 (range 5-10) and median MELD score was (range 6-24). The SVR12 rates by GT are shown in table 1. SOF/VEL+RBV for 12 weeks resulted in high SVR rates with relapse occurring in 1 (1%) GT1 and 1 (8%) GT3 subjects respectively. A second GT3 patient in the SOF/VEL+RBV 12 Week group had on-treatment breakthrough with pharmacokinetic data consistent with nonadherence. There were no genotype 2, 4 and 6 virologic failures across all treatment arms. Among patients who achieved SVR, 47% and 56% had improvements in CPT and MELD scores by week 12 post EOT largely driven by increases in albumin and decreases in bilirubin. The most common adverse events were fatigue, headache, nausea and (anaemia in the RBV containing arm with a median Hgb decrease of 1.4 g/dL). Overall 9 patients discontinued SOF/VEL due to adverse events. A total of 47 (18%) patients experienced serious adverse events (SAEs) with the most common being hepatic encephalopathy and sepsis; only 1 patient had SAEs assessed as related to SOF/VEL. There were 9 deaths: sepsis (3); liver failure (2); cardiopulmonary arrest (2); myocardial infarction (1) and respiratory failure (1); none were assessed as related to study drug. Conclusions: In HCV infected patients with decompensated liver disease, SOF/VEL+RBV for 12 weeks resulted in an overall SVR rate of 94.3% with high individual SVR rates across all HCV genotypes and
resulted in early improvements in liver function. This regimen was well tolerated with AEs consistent with clinical sequelae of decompensated liver disease and RBV.

Virologic Outcome By Genotype

<table>
<thead>
<tr>
<th>Total (All GTs)</th>
<th>GT-1</th>
<th>GT-2</th>
<th>GT-3</th>
<th>GT-4</th>
<th>GT-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOF/VEL 12 Week Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR12</td>
<td>75/90 (83.3%)</td>
<td>60/68 (88.2%)</td>
<td>4/4 (100.0%)</td>
<td>7/14 (50.0%)</td>
<td>4/4 (100.0%)</td>
</tr>
<tr>
<td>Virologic Failure</td>
<td>11/90 (12.2%)</td>
<td>5/68 (7.4%)</td>
<td>0/4</td>
<td>6/14 (42.9%)</td>
<td>0/4</td>
</tr>
<tr>
<td>Other</td>
<td>4/90 (4.4%)</td>
<td>3/68 (4.4%)</td>
<td>0/4</td>
<td>1/14 (7.1%)</td>
<td>0/4</td>
</tr>
<tr>
<td>SOF/VEL/RBV 12 Week Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR12</td>
<td>82/87 (94.3%)</td>
<td>65/85 (96.5%)</td>
<td>4/4 (100.0%)</td>
<td>11/13 (84.6%)</td>
<td>2/2 (100.0%)</td>
</tr>
<tr>
<td>Virologic Failure</td>
<td>3/87 (3.4%)</td>
<td>1/68 (1.5%)</td>
<td>0/4</td>
<td>2/13 (15.4%)</td>
<td>0/2</td>
</tr>
<tr>
<td>Other</td>
<td>2/87 (2.3%)</td>
<td>2/68 (2.9%)</td>
<td>0/4</td>
<td>0/13</td>
<td>0/2</td>
</tr>
</tbody>
</table>

Other = subject who did not achieve SVR and did not meet virologic failure criteria.

Disclosures:
Michael R. Charlton - Grant/Research Support: Gilead Sciences, Merck, Janssen, Abbvie, Novartis
Jacqueline G. O’Leary - Advisory Committees or Review Panels: Gilead, Abbvie; Consulting: Janssen, Novartis, Astellas; Grant/Research Support: Grifols, Fisher Scientific; Speaking and Teaching: Gilead, Abbvie
Natalie H. Bzowej - Grant/Research Support: Gilead Sciences, Ocera Therapeutics
Andrew J. Muir - Advisory Committees or Review Panels: BMS, Gilead, Janssen, Merck; Consulting: Theravance; Grant/Research Support: Abbvie, Abbvie, BMS, Gilead, Janssen, Merck, Achillion, Lumena
Kevin M. Korenblat - Speaking and Teaching: Biocompatibles, Inc.
Jonathan M. Fenkel - Advisory Committees or Review Panels: Merck, Consulting: Gilead Pharmaceuticals, Janssen Therapeutics, Bristol-Myers Squibb, Abbvie
K. Rajender Reddy - Advisory Committees or Review Panels: Merck, Janssen, Vertex, Gilead, BMS, Abbvie; Grant/Research Support: Merck, BMS, Ikaria, Gilead, Janssen, Abbvie
Eric Lawitz - Advisory Committees or Review Panels: Abbvie, Achillion Pharmaceuticals, Regulus, Theravance, Enanta, Idenix Pharmaceuticals, Janssen, Merck & Co, Novartis; Gilead; Grant/Research Support: Abbvie, Abbvie, Schering-Plough; Speaking and Teaching: Gilead, Janssen, Abbvie, Bristol Myers Squibb
Robert J. Fontana - Consulting: GlaxoSmithKline, CLD; Grant/Research Support: Gilead, vertex, BMS, Janssen, Gilead
Eugene R. Schiff - Advisory Committees or Review Panels: Bristol Myers Squibb, Gilead, Merck, Janssen, Salix Pharmaceutical, Pfizer, Aradigm, Consulting: Acorda; Grant/Research Support: Bristol Myers Squibb, Abbott/Velba; Gilead, Janssen, Merck, Conatus, Medmira, Roche, Janssen, OraSure Technologies, Discovery Life Sciences, Siemens, Beckman Coulter, Siemens
Michael W. Fried - Consulting: Abbvie, Merck, Abbvie, Bristol-Myers Squibb, Merck; Grant/Research Support: Merck, Abbvie, Janssen, Bristol Myers Squibb, Gilead; Patent Held/Filed: HCCPlex
Brian Doehle - Employment: Gilead Sciences
Di An - Employment: Gilead Sciences, Inc.
John McNally - Employment: Gilead Sciences, Inc; Stock Shareholder: Gilead Sciences, Inc
Anu Osinusi - Employment: gilead sciences
Diana M. Brainard - Employment: Gilead Sciences; Stock Shareholder: Gilead Sciences
John G. Hutchinson - Employment: Gilead Sciences; Stock Shareholder: Gilead Sciences
Robert S. Brown - Consulting: Gilead, Janssen, Abbvie, Merck, BMS
Michael P. Curry - Advisory Committees or Review Panels: Bristol Meyers Squibb, Abbvie; Grant/Research Support: Gilead Sciences, Mass Biologics, Merck, Salix, Conatus; Stock Shareholder: Achillion

The following people have nothing to disclose: Thomas D. Schiano, Lewis W. Teperman

LB-14

100% SVR4 in HCV Genotype 1 Non-Cirrhotic Treatment-Naïve or -Experienced Patients With the Combination of ABT-493 and ABT-530 for 8 Weeks (SURVEYOR-I)

Fred Poordad1,4, Francisco Felizarta2, Armen Asatryan3, Tarek I. Hasnaini4, Humberto I. Aguilar2, Jacob P. Lalezari5, J. Scott Overcash7, Teresa Ng3, Ran Liu,6 Chi-Hwei Lin,3 Federico J. Mensa3, Jens Kort2,1; Texas Liver Institute, San Antonio, TX; 2Private Practice, Bakerfield, CA; 3AbbVie Inc., North Chicago, IL; 4Southern California GI and Liver Centers and Southern California Research Center, Coronado, CA; 5Louisiana Research Center, Shreveport, LA; 6Quest Clinical Research, San Francisco, CA; 7eStudySite, San Diego, CA

Introduction: Next-generation HCV direct-acting antivirals (DAAs) ABT-493, an NS3/4A protease inhibitor identified by AbbVie and Enanta, and ABT-530, an NSSA inhibitor, demonstrated potent pangenotypic in vitro antiviral activity, with a high barrier to resistance and maintenance of activity against common resistance-associated variants. In Part 1 of the SURVEYOR-I study, ABT-493 and ABT-530 co-administered for 12 weeks showed high sustained virologic response (SVR) rates and was well tolerated in non-cirrhotic patients with HCV genotype 1 (GT1) infection. We present here the efficacy and safety data from Part 2 of the SURVEYOR-I study, which evaluates the combination of ABT-493 and ABT-530 administered for 8 weeks in non-cirrhotic patients with GT1 infection.

Methods: Treatment-naïve or pegylated interferon treatment-experienced patients received once-daily ABT-493 300 mg + ABT-530 120 mg for 8 weeks. SVR at post-treatment week 4 (SVR4; HCV RNA measured using COBAS TaqMan® RT-PCR [lower limit of detection of 15 IU/mL and lower limit of quantitation of 25 IU/mL]) and safety data are reported.

Results: 34 patients were enrolled: 56% male, 97% white, 71% GT1a, 68% non-CC IL28B, 15% had an F3 fibrosis stage at baseline, and 15% were treatment experienced. The median (range) HCV RNA log 10 IU/mL was 6.5 (2.9-7.5) at baseline, and 38% of patients had HCV RNA ≥ 6,000,000 IU/mL. All 34 (100%) patients achieved SVR4. SVR at post-treatment week 12 (SVR12) data will be available for presentation. One patient discontinued the study prematurely at treatment week 4 with HCV RNA <15 IU/mL due to the serious adverse event (AE) of adenocarcinoma, which was assessed as not related to treatment with study drugs. There were no additional serious or severe AEs reported. The most frequent AEs observed in >10% of patients were fatigue (21%) and diarrhea (12%).

Conclusions: The combination of highly potent next generation HCV DAAs, ABT-493 and ABT-530, was well tolerated and achieved 100% SVR4 in all patients regardless of baseline viral load or presence or absence of prior treatment history.

Disclosures:
Fred Poordad - Advisory Committees or Review Panels: Abbott/Abbvie, Achillion, BMS, Inhibitex, Boehringer Ingelheim, Pfizer, Genentech, Idenix, Gilead, Merck, Vertex, Salix, Janssen, Novartis; Grant/Research Support: Abbvie, Anadys, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Pharmasset, Vertex, Salix, Tibotec/Janssen, Novartis
Francisco Felizarta - Grant/Research Support: Abbvie, Gilead, Janssen, Merck, BMS, Boehringer-Ingelheim, Vertex, Roche; Speaking and Teaching: Abbvie, Gilead, Janssen, Merck
Armen Asatryan - Employment: Abbvie
LB-15
Phase 2, Randomized, Open-Label Clinical Trials of the Efficacy and Safety of Grazoprevir and MK-3682 (NS5B Polymerase Inhibitor) with Either Elbasvir or MK-8408 (NS5A Inhibitor) in Patients with Chronic HCV GT 1, 2 or 3 Infection (Part A of C-CREST-1 & 2)

Edward J. Gane1, Stephen Pianko2, Stuart K. Roberts4, Alex J. Thompson1,3, Stefan Zauzemer5, Eli Zuckermand, Ziv Ben Ari7, Graharn R. Foster, Kosh Agarwal8, Alex L. Laursen9, Jan Gerstoft10, Wei Gao5, Hseuh-cheng Huang1, Brian Fitzgeraldb, Jerry J. Llif, Shuyan Wan1, Frank Dutko1, Bach-Yen T. Nguyen1, Janice Wahlf, Eliav Barr, Joan R. Butterton1, Rafael Esteban7,12,1 Merck & Co., Inc., Kenilworth, NJ; 2 Auckland District Health Board, Auckland, New Zealand; 3 Monash Health and Monash University, Melbourne, VIC, Australia; 4 Alfred Hospital, Melbourne, VIC, Australia; 5 JW Goethe University Hospital, Frankfurt, Germany; 6 Carmel Medical Center, Haifa, Israel; 7 Sheba Medical Center, Ramat Gan, Israel; 8 Queen Mary’s University of London, London, United Kingdom; 9 King’s College Hospital, London, United Kingdom; 10 Aarhus University Hospital, Aarhus, Denmark; 11 University of Copenhagen, Copenhagen, Denmark; 12 Hospital Universitario Vall d’Hebron, Barcelona, Spain; 13 St. Vincent’s Hospital Melbourne, Melbourne, VIC, Australia

PURPOSE/BACKGROUND: To evaluate the safety and efficacy of all-oral therapy for HCV using combinations of 3 direct-acting antiviral drugs: grazoprevir, an NS3/4A protease inhibitor; MK-3682, an NS5B polymerase inhibitor, and either elbasvir or MK-8408, which are NS5A inhibitors. METHODS: In Part A of 2 ongoing randomized, dose-ranging, parallel-group, multicenter, open-label Phase 2 trials, 93 GT1 (45 GT1a, 47 GT1b), 61 GT2, and 86 GT3-infected treatment-naïve, non-cirrhotic patients with chronic HCV infection were dosed once-daily for 8 weeks duration with one of 4 regimens containing the 300 mg dose of MK-3682 and/or elbasvir resulted in lower efficacy (SVR12 in 29/45 (64%) GT2 patients; 60-71% across the 3 arms). Relapses were more common among patients who harbored an L31M/1 NNSA variant at baseline. No treatment-emergent RAVs were observed. RESULTS: GT1: Across treatment arms, 45/46 (98%) GT1a and 46/47 (98%) GT1b patients achieved sustained virologic response 12 weeks after end of study therapy (SVR12). In the 2 relapsers, population sequencing did not detect NS53, NS58, or NNSA resistance associated variants (RAVs) conferring ≥5-fold potency shifts at baseline or following relapse. GT2: The grazoprevir/MK-3682 (450 mg)/MK-8408 regimen was highly effective, with SVR12 among 15/16 (94%) of GT2-infected patients, but regimens containing the 300 mg dose of MK-3682 and/or elbasvir resulted in lower efficacy (SVR12 in 29/45 (64%) GT2 patients; 60-71% across the 3 arms). 78/86 (91%) of GT3-infected patients; response was comparable across arms (86-95%). Eight GT3 patients relapsed. SVR12 was lower among GT3-infected patients who harbored an LNSA A30K, L31M, or Y93H RAV at baseline compared with patients without these RAVs at baseline (5/11 [45%] vs 72/74 [97%], respectively). Two of 8 GT3 relapers acquired NNSA Y93H. Across arms, SVR12 was achieved among 86-95% GT2 patients; 60-71% across the 3 arms). Relapses were more common among patients who harbored an L31M/1 NNSA variant at baseline. No treatment-emergent RAVs were observed. GT3: Across arms, SVR12 was achieved among 78/86 (91%) of GT3-infected patients; response was comparable across arms (86-95%). Eight GT3 patients relapsed. SVR12 was lower among GT3-infected patients who harbored an LNSA A30K, L31M, or Y93H RAV at baseline compared with patients without these RAVs at baseline (5/11 [45%] vs 72/74 [97%], respectively). Two of 8 GT3 relapers acquired NNSA Y93H. Across arms, SVR12 was achieved among 86-95% GT2 patients; 60-71% across the 3 arms). Relapses were more common among patients who harbored an L31M/1 NNSA variant at baseline. No treatment-emergent RAVs were observed. GT3: Across arms, SVR12 was achieved among
LB-16
High Rates of SVR in Patients with HCV Genotype 2 or 3 Infection Treated with Ombitasvir/Paritaprevir/r and Sofosbuvir with or without Ribavirin

Stephen Shafran1, David Shaw2, Eric Cohen3, Kash Agarwal4, Graham R. Foster,5 Manal Abunimeh6, Daniel E. Cohen7, Edward J. Gane8; 1University of Alberta, Edmonton, AB, Canada; 2Royal Adelaide Hospital, Adelaide, SA, Australia; 3AbbVie Inc., North Chicago, IL; 4Institute of Liver Studies, Kings College Hospital, London, United Kingdom; 5Queen Mary University of London, Barts Health, London, United Kingdom; 6Auckland City Hospital, Liver Unit, Auckland, New Zealand

Background: Few interferon-free treatments are approved for hepatitis C virus (HCV) genotype [GT] 2 and 3 infection. Among the approved treatment options, sustained virologic response rates 12 weeks post-treatment (SVR12) are lower in patients with cirrhosis or with prior treatment failure. We investigated the safety and efficacy of ombitasvir/paritaprevir (identified by AbbVie and Enanta)/ritonavir (OBV/PTV/r) plus sofosbuvir (SOF) in patients with GT2 or GT3 infection without cirrhosis. Methods: In this phase 2, open-label, multicenter study, patients with GT3 infection were randomized to receive OBV/PTV/r (25/150/100 mg once daily) plus SOF (400 mg once daily) with or without weight-based ribavirin (RBV) for 12 weeks. Patients were stratified by prior treatment status and IL28B genotype (CC vs non-CC). Patients with GT2 infection all received OBV/PTV/r plus SOF with RBV for 8 weeks. Efficacy was assessed by SVR12 defined as HCV RNA <25 IU/mL. Results were analyzed in all patients receiving at least 1 dose of study drugs. Results: Twenty patients with GT3 infection, including 8 with prior treatment failure, were randomized to receive OBV/PTV/r + SOF without RBV (N = 11) or with RBV (N = 9). One patient discontinued OBV/PTV/r + SOF + RBV treatment after 1 week due to non-serious events of viral flu-like symptoms and emesis. All other patients were HCV RNA suppressed <25 IU/mL by treatment week 2 and through the end of treatment. As of September 17 there have been no relapses; SVR12 was achieved in 7/7 (100%) GT3 patients treated for 12 weeks with OBV/PTV/r + SOF, and in 7/8 (88%) GT3 patients treated with OBV/PTV/r + SOF + RBV for 12 weeks. Ten patients with GT2 infection, including 2 with treatment experience, received 8 weeks of treatment with OBV/PTV/r + SOF + RBV, and 10/10 (100%) were HCV RNA suppressed at the end of treatment. As of September 17, all remain suppressed through post-treatment week 2 (10/10, 100%) and SVR at post-treatment week 4 was achieved in 9/9 (100%). Among the 30 patients in the study, 1 serious adverse event (pneumonia) was reported and not considered related to study drugs. Conclusions: The investigational combination of OBV/PTV/r with SOF for 12 weeks may be a promising IFN and RBV-free treatment option for patients with GT3 infection. This combination plus RBV for 8 weeks also appears highly effective in patients with GT2 infection. Complete SVR12 data will be presented.

Disclosures:
Stephen Shafran - Advisory Committees or Review Panels: Bristol-Myers Squibb, Gilead Sciences, Merck; Grant/Research Support: AbbVie, Bristol-Myers Squibb, Gilead Sciences, Janssen, Merck
Eric Cohen - Employment: AbbVie
Kash Agarwal - Advisory Committees or Review Panels: Gilead, BMS, Novartis, Janssen, AbbVie; Consulting: MSD, Janssen, Achillion; Grant/Research Support: Roche, Gilead, BMS; Speaking and Teaching: Astellas, Gilead, BMS, GSK
Graham R. Foster - Advisory Committees or Review Panels: GlaxoSmithKline, Novartis, Boehringer Ingelheim, Tibotec, Gilead, Janssen, Idexx, GlaxoSmithKline, Novartis, Roche, Ibex, Gilead, Merck, Janssen, Idexx, BMS, Alnylam; Board Membership: Boehringer Ingelheim; Grant/Research Support: Roche, Chughai, Springsbank; Speaking and Teaching: Roche, Gilead, Tibotec, Merck, BMS, Boehringer Ingelheim, Gilead, Janssen
Manal Abunimeh - Employment: AbbVie
Daniel E. Cohen - Employment: AbbVie; Stock Shareholder: AbbVie
Edward J. Gane - Advisory Committees or Review Panels; Novir, AbbVie, Janssen, Gilead Sciences, Janssen Cilag, Achillion, Merck, Tekmira; Speaking and Teaching: AbbVie, Gilead Sciences, Merck
The following people have nothing to disclose: David Shaw

LB-17
Failure with All-oral DAA Regimens: Real-world experience from the TRIO Network

Nezam H. Afdhal1, Bruce Bacon2, Douglas Dieterich3, Steven L. Flamm4, Kris V. Kowdle5, Yoori Lee6, Zobair M. Younossi7, Naoky CS C. Tsai8; 1Beth Israel Deaconess Medical Center, Boston, MA; 2Saint Louis University, St. Louis, MO; 3Mount Sinai School of Medicine, New York, NY; 4Northwestern University, Chicago, IL; 5Swedish Medical Center, Seattle, WA; 6Trio Health Analytics, La Jolla, CA; 7Inova/Fairfax Hospital, Fairfax, VA; 8The Queen’s Medical Center, Honolulu, HI

BACKGROUND: DAA therapies ledipasvir/sofosbuvir (LDV/SOF) and ombitasvir/paritaprevir/ritonavir+dasabuvir (VKP) have yielded SVR12 rates over 95% in clinical trials. Given the remarkable efficacy in clinical trials, understanding factors associated with treatment failure in clinical practice remains challenging due to the relatively few patients who do not achieve an SVR. AIM: The purpose of this study is to examine a large real-world population to assess the characteristics of patients with genotype 1 HCV who failed 12 week LDV/SOF, VKP or other all-oral DAA therapies. METHODS: Data were collected from providers and specialty pharmacies through Trio Health’s Innervation Platform, a cloud-based disease management program. All genotype 1 HCV patients who initiated treatment with 12 week LDV/SOF, VKP or sofosbuvir + ledipasvir (SMV+SOF)-based regimens between Oct 2014 and Mar 2015 were included in the analysis (n = 1225). RESULTS: Overall SVR12 rate from this heterogeneous population was 97% (1190/1225). By regimen, rates were 97% (1128/1159) for LDV/SOF+/−RBV, 95% (37/39) for VKP+/RBV and 93% (25/27) for SMV+SOF+/−RBV. Of the 35 patients that did not achieve SVR, 6 discontinued treatment and 29 completed therapy and were virological failures. In the virological failures, treatment site (academic versus community practice), age, race, genotype subtype, viral load and presence of HIV coinfection (100% SVR, n = 90) or post-transplant (100% SVR, n = 40) were not associated with treatment failure. Positive association with virological failure in real life was male (80% in failures versus 58% in SVR, p<0.01), cirrhosis (60% in failures versus 27% in SVR, p<0.001), platelets less than 100,000/ml (41% in failures versus 10% in SVR, p<0.001) and prior treatment failure (60% in failures versus 40% in SVR, p=0.016). SUMMARY: Overall SVR in real world genotype 1 HCV patients is 97% across regimens and patient characteristics with cirrhosis, thrombocytopenia and prior treatment failure representing the most difficult to treat patients. Treatment discontinuation is not a major issue with any all oral DAA therapy

Disclosures:
Nezam H. Afdhal - Advisory Committees or Review Panels: Trio Helath Care; Board Membership: Journal Viral hepatitis; Consulting: Merck, EchoSens, BMS, Achillion, GlaxoSmithKline, Springbank, Gilead, AbbVie; Grant/Research Support: Gilead; Stock Shareholder: Springbank
Bruce Bacon - Advisory Committees or Review Panels: Gilead, Bristol-Meyers Squibb, ISIS, Abbvie, Janssen; Consulting: Merck; Grant/Research Support: Merck, Gilead, Bristol-Meyers Squibb, Abbvie; Speaking and Teaching: Merck, Gilead, Abbvie, Salix, Janssen
Douglas Dieterich - Advisory Committees or Review Panels: Gilead, BMS, Abbvie, Janssen, Merck, Achillion
LB-18
Daclatasvir and Asunaprevir in Non-Japanese Asian Patients With Chronic HCV Genotype 1b Infection who are ineligible for or Intolerant to Interferon-alfa Therapies With or Without Ribavirin: Phase 3 SVR12 Interim Results

Lai Wei1, Mingxiang Zhang2, Min Xu3, Wan-Long Chuang4, Wei Lu5, Wen Xie6, Zhansheng Jia7, Guozhong Gong8, Yueqi Li9, Si Hyun Bae10, Yong-Feng Yang11, Qing Xie12, Shumei Lin13, Xinyue Chen14, Junqi Niu15, Jidong Jia16, Tushar Garimella18, Anne Torbeyns19, Fiona McPhee20, Michelle Treitel18, Philip Yin20, Ling Mo17,fei University People's Hospital and Peking University Hospital, Guangzhou, China; 4Kaohsiung Medical University, Taiwan, China; 5Beijing Ditan Hospital, Capital Medical University, Beijing, China; 6Tangdu Hospital, Tangdu, China; 7The Second People's Hospital, Tianjin, China; 8Beijing Ditan Hospital, Capital Medical University, Beijing, China; 10Changzheng Hospital, Shanghai, China; 11Fudan University, Shanghai, China; 12Shanghai Research Institute of Medical Science, Shanghai, China; 13The First Affiliated Hospital of M.C of Xi'an Jiaotong University, China; 14Youan Hospital, Capital Medical University, Beijing, China; 15Beijing Youan Hospital, Capital Medical University, Beijing, China; 16Second Affiliated Hospital of Nantong University, Nantong, China; 17Second Hospital of Nanjing Affiliated to Medical School of Soochow University, Nanjing, China; 18Shanghai Jiaotong University Hospital, Shanghai, China; 19Hepatology Institute, Peking, China; 20Bristol-Myers Squibb, Gilead, AbbVie; Speaking and Teaching: Bristol-Myers Squibb, Gilead, AbbVie; 21Gilead, Salix, Beijing, China; 22Bristol-Myers Squibb, Shanghai, China; 23Bristol-Myers Squibb, Princeton, NJ; 24Bristol-Myers Squibb, Braine-l’Alleud, Belgium; 25Bristol-Myers Squibb, Wallingford, CT

Purpose The all-or-none combination of daclatasvir (DCV; pan-genotypic NSSA inhibitor) and asunaprevir (ASV; NSS3 protease inhibitor) has been shown to be effective and well tolerated in Japanese patients with chronic HCV genotype (GT) 1b infection. This phase 3, single-arm, open-label study investigated the efficacy and safety of DCV + ASV in non-Japanese Asian patients with chronic HCV GT 1b infection who are ineligible for or intolerant to interferon-alfa therapies with or without ribavirin (IFN ± RBV). Methods Patients received DCV 60 mg (tablet) once daily + ASV 100 mg (soft capsule) twice daily for 24 weeks. Enrollment of patients with compensated cirrhosis was capped at 40%. The primary endpoint was sustained virologic response at post-treatment (PT) Week 24 (SVR24); interim (secondary) efficacy (SVR12) and safety analyses, conducted at PT Week 12, are reported here. Results In total, 159 patients received DCV + ASV treatment; the majority were Chinese (89%), female (65%), aged (65 years [82%], non-cirrhotic (67%), ILL28B CC (60%), and had HCV RNA levels ≥800,000 IU/mL (91%). HCV RNA was undetectable in 86% of patients by treatment Week 4. SVR12 was achieved by 145 patients (91%, 95% CI 85.7–95.1) and was unaffected by cirrhosis status, gender, age, baseline HCV RNA level, ILL28B genotype, and IFN ineligibility/intolerance status; SVR12 was achieved by 47 of 52 (90%, 95% CI 79.0–96.8) and 98 of 107 (92%, 95% CI 84.6–96.1) patients with and without cirrhosis, respectively. SVR12 was higher in patients without baseline NSSA (L31M or Y93H) resistance-associated variants (RAVs) (n=137/139 [99%]), regardless of the presence (n=43/44 [98%]) or absence (n=94/95 [99%]) of cirrhosis. SVR12 was lower in patients with baseline NSSA RAVs (n=8/19 [42%]). All deaths (n=1/159 [0.6%]), serious adverse events (AEs) (n=5/159 [3.1%]) and grade 4 laboratory abnormalities (n=3/159 [1.9%]) that occurred on-treatment were considered to be unrelated to the study drugs; two patients experienced AEs leading to discontinuation (increase in bilirubin; anemia and increase in LDH). AEs in ≥5% of patients were: platelet count decrease, upper respiratory tract infection, ALT increase, absolute neutrophil count decrease, monocyte decrease, white blood cell decrease, thrombocytopenia and pruritus. Safety parameters were comparable in patients with and without cirrhosis. Conclusions The all-or-none combination of DCV + ASV achieved a high SVR12 rate of 91%, rising to 99% in patients without baseline NSSA RAVs. This regimen was generally well tolerated in IFN ± RBV ineligible/intolerant non-Japanese Asian HCV GT 1b patients with or without cirrhosis.

Disclosures: Lai Wei - Advisory Committees or Review Panels: Gilead, AbbVie; Consulting: MSD, Grant/Research Support: BMS; Speaking and Teaching: BMS, Roche, MSD; Jidong Jia - Consulting: BMS, GSK, MSD, Novartis, Roche; Tushar Garimella - Employment: Bristol-Myers-Squibb; Stock Shareholder: Abbvie, Bristol-Myers-Squibb; Anne Torbeyns - Employment: Bristol-Myers-Squibb; Stock Shareholder: Bristol-Myers Squibb; Fiona McPhee - Employment: Bristol-Myers Squibb; Michelle Treitel - Employment: BMS; Philip Yin - Stock Shareholder: Bristol-Myers Squibb; Ling Mo - Employment: Bristol-Myers Squibb (China) Investment Co. Ltd

The following people have nothing to disclose: Mingxiang Zhang, Min Xu, Wei Lu, Wen Xie, Zhansheng Jia, Guozhong Gong, Yueqi Li, Si Hyun Bae, Yong-Feng Yang, Qing Xie, Shumei Lin, Xinyue Chen, Junqi Niu.
received from 26 VA medical centers from February-August 2015 and 220 (98%) yielded reportable results. Genotypes tested were: GT1a (150), GT1b (40), GT3a (20), GT2b (6), GT4a (3), GT2a (1). DRMs found overall are described in Table 1. Fourteen patients had DRMs in 2 or more genes. VA treatment history was known for 176 (80%) patient samples and of these, 25 were baseline samples from those who had only received peg-interferon/ribavirin. In those that were treatment naive (and had no prior DAA exposure) 31/52 (60%) had one or more DRMs. In samples from treatment-experienced patients with prior DAA exposure 57/99 (58%) had one or more DRMs, with simprevir/sofosbuvir (SIM/SOF, n=22) and ledipasvir/sofosbuvir (LED/SOF, n=20) being the most common regimens prescribed. Of those who failed SIM/SOF as their first VA regimen, NS3 DRMs included G80K (12), R155K (10) and D168V (4), and one NS5B L159F (1). Of those who failed LED/SOF as their first VA regimen, NS5A DRMs included: Q30R/H/E (7), Y93H/C/N (6), M28V (1) and H58D (1). One primary regimen failure of ombitasvir/paritaprevir/ritonavir/asabuvir included NS5A DRMs M28V and Q30R. Conclusion: In VA specimens tested for HCV DRMs, numerous patients were found to have preexisting or post treatment HCV DRMs after regimen failure. Genotypic resistance testing may be helpful to guide initial and subsequent DAA regimens.

Table 1. Total Tested (# with DRM, %)

<table>
<thead>
<tr>
<th>NS3</th>
<th>NS5A</th>
<th>NS5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>124 (57, 46%)</td>
<td>96 (41, 43%)</td>
<td>107 (6, 6%)</td>
</tr>
</tbody>
</table>

Mutations Fixed (9)

Q80K (54)
Q80K/H/E (20)
S56G/Q (6)
R155K/Q (22)
Y93H (18)
M414T (1)
D168V/E (9)
L31M/V (14)
L159F (1)
Y93M (3)
M28VT (8)
Q30R (1)
Y58V/C/S (7)
T54S/A (2)
K23R (2)
H58D (2)

Disclosures:
Mark A. Winters - Independent Contractor: Eiger Biopharmaceuticals
Timothy R. Morgan - Grant/Research Support: Merck, Abbvie, Genentech, Gilead, Bristol Myers Squibb
The following people have nothing to disclose: Mark Holodniy, Lisa I. Backus, Pamela S. Belperio, David Ross

LB-20
Retirement of HCV Genotype 1 DAA-failures with Ombitasvir/Paritaprevir/r, Dasabuvir, and Sofosbuvir
Fred Poordad1, Michael Bennett2, Thomas E. Sepe3, Eric Cohen4, Robert Reindollar5, Timothy R. Morgan6, Raymond W. Phillips7, Asma Siddique8, Greg Sullivan9, Terry D. Box10, Bo Fu11, Tami Pilot-Matias12, Manal Abunimeh13, Daniel E. Cohen14, Ziadi Younes15; 1The Texas Liver Institute/University of Texas Health Science Center, San Antonio, TX; 2Medical Associates Research Group, San Diego, CA; 3University Gastroenterology, Liver Center, Providence, RI; 4AbbVie Inc., North Chicago, IL; 5Piedmont Healthcare/Carolina's Center for Liver Disease, Statesville, NC; 6University of Colorado Denver School of Medicine, Aurora, CO; 7Gastroenterology Group of Naples PA, Naples, FL; 8Virginia Mason Hospital and Medical Center, Seattle, WA; 9Parkway Medical Center, Birmingham, AL; 10Clinical Research Centers of America, Murray, UT; 11GastroOne, Germantown, TN

Background: Retreatment options for HCV patients who fail treatment with direct-acting antiviral (DAA) regimens are not yet clearly defined. Resistance-associated variants in NS5A have been shown to persist up to 96 weeks post-treatment; thus, patients who fail regimens with NS5A inhibitors are likely to require a multi-targeted approach to retreat infection. We evaluated the safety and efficacy of ombitasvir/paritaprevir (identified by AbbVie and Enanta/ritonavir (OBV/PTV/r) and dasabuvir (DSV) plus sofosbuvir (SOF) in DAA-experienced patients with HCV genotype (GT) 1 infection. Methods: Patients with GT1a infection without cirrhosis were to receive OBV/PTV/r + DSV + SOF for 12 weeks; ribavirin (RBV) was added for patients with GT1a infection without cirrhosis. GT1a-infected patients with cirrhosis received 24 weeks of OBV/PTV/r + DSV + SOF + RBV. Enrolled patients must have had history of previous DAA treatment failure without discontinuation for reasons other than virologic failure. Efficacy was assessed by sustained virologic response (SVR), defined as an HCV RNA <25 IU/mL. Safety was assessed in all patients receiving at least 1 dose of study drugs. Results: Twenty-two DAA-experienced patients were enrolled including 20 with GT1a infection and 6 with compensated cirrhosis. Prior DAAAs included in the previous failed treatment regimens were OBV/PTV/r + DSV (n = 14), OBV/PTV/r (n = 2), telaprevir (n = 2), SOF (n = 2), simprevir/sofatsavir (n = 1), and simprevir + SOF (n = 1). One GT1a patient without cirrhosis had treatment extended to 24 weeks in response to having an HCV RNA >25 IU/mL at treatment week 4. As of September 1, SVR4 was achieved in 15/15 (100%) patients treated for 12 weeks. Among patients receiving 24 weeks of treatment, 7/7 are virally suppressed below the lower limit of detection while on treatment. Two patients experienced serious adverse events (pneumonia and cellulitis), neither assessed as being related to study drugs. The patient with pneumonia discontinued study drug at week 10 and HCV RNA remains undetectable. Conclusions: The multi-targeted regimen of OBV/PTV/r + DSV ± RBV in combination with SOF appears to be a promising retreatment strategy for patients who fail DAA-containing HCV regimens, including those containing an NS5A inhibitor. Base-line resistance and available SVR12 data will be presented.

Disclosures:
Fred Poordad - Advisory Committees or Review Panels: Abbott/Abbvie, Achillion, BMS, Inhibitex, Boehringer Ingelheim, Pfizer, Genentech, Idenix, Gilead, Merck, Vertex, Salix, Janssen, Novartis; Grant/Research Support: Abbvie, Anadys, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Pharmasset, Vertex, Salix, Tibotec/Janssen, Novartis
Thomas E. Sepe - Advisory Committees or Review Panels: Gilead, BMS, Consulting: Gilead; Grant/Research Support: Gilead, AbbVie, BMS, Janssen, Idenix; Speaking and Teaching: Gilead, AbbVie
Eric Cohen - Employment: AbbVie
Gregory T. Everson - Advisory Committees or Review Panels: Roche/Genentech, Abbvie, Gilead, Biogen, Boehringer Ingelheim, Eisai, Bristol-Myers Squibb, HepC Connection, BioTest, Gilead, Merck; Board Membership: HepQua LLC, PSC Partners, HepQua LLC; Consulting: Abbvie, BMS, Gilead, Bristol-Myers Squibb; Grant/Research Support: Roche/Genentech, Pharmasset, Vertex, Abbvie, Bristol-Myers Squibb, Merck, Eisai, Conatus, PSC Partners, Vertex, Tibotec, Globimmune, Pfizer, Gilead; Management Position: HepQua LLC, HepQua LLC; Patent Held/Filed: Univ of Colorado; Speaking and Teaching: Abbvie, Gilead, Terry D. Box - Advisory Committees or Review Panels: Gilead, Genentech, AbbVie, Salix, Janssen, Grant/Research Support: Gilead, Merck, BMS, AbbVie, Idenix, Salix, Cumberland, Boehringer Ingelheim, Genentech/Vertex, Salix, Tibotec/Janssen, Novartis
Tami Pilot-Matias - Employment: AbbVie; Stock Shareholder: AbbVie
Manal Abunimeh - Employment: AbbVie
Daniel E. Cohen - Employment: AbbVie; Stock Shareholder: AbbVie
Ziadi Younes - Consulting: Gilead; Grant/Research Support: BMS, AbbVie, Gilead, Vertex, Idenix, Merck, Janssen, Tabira, Intercept; Speaking and Teaching: Gilead, Vertex, AbbVie
The following people have nothing to disclose: Michael Bennett, Robert Reindollar, Raymond W. Phillips, Asma Siddique, Greg Sullivan
LB-21
Preclinical characterization of CC-31244, a pan-genotypic, potent non-nucleoside NS5B polymerase inhibitor for the treatment of chronic hepatitis C

Irina Jacobson¹, Michael Feese¹, Hong Xiao¹, Lothar Uher¹, Biing Lin¹, Emiliano J. Sanchez¹, Robert J. Tomkiewicz¹, Tony Whitaker², Tamara McBryar², Luz Pascual², Judy Pattassery², Sam Lee¹, ¹Cocrystal Pharma, Inc., 1, Bothel, WA; ²Cocrystal Pharma, Inc., 2, Tucker, GA

Purpose/Background: NS5B non-nucleoside inhibitors are a distinct class of direct acting agents (DAAs) for the treatment of HCV. We designed and characterized a novel, pan-genotypic NNI inhibitor (CC-31244), which is targeted for use in combination DAA therapies. We present here our recent preclinical study results, including in vitro characterization of CC-31244, drug resistance profiles, and pharmacokinetic data. Methods: NS5B polymerases (GT1-6) and drug resistant NS5B polymerase cocrystals were diffractioned to 1.7 – 2.2 Å. Antiviral activity was determined using HCV replicon and chimeric replicon assays. Safety pharmacology and pharmacokinetic profiles of CC-31244 were determined. Results: CC-31244 showed pan-genotypic activity against genotypes 1a-6a. In HCV replicon assays, the EC₅₀ values of CC-31244 against replicons from genotypes 1a, 1b, and 2a, and chimeric 1b replicons encoding NS5B from genotypes 3a, 4a, or 5a ranged from 2.26 mM. High resolution X-ray data have confirmed that CC-31244 binds to a highly conserved drug binding pocket, NNI-4, and extends to the highly conserved active site of the NS5B polymerase. CC-31244 showed excellent activity against the NNI-4 drug resistant variants including S365T and N316Y. HCV replicons with reduced susceptibility to CC-31244 have been selected in cell culture for GT1b. Reduced susceptibility to CC-31244 was associated with the NS5B amino acid substitution C445F. Site-directed mutagenesis of the C445F substitution conferred 8-fold increased EC₅₀ to CC-31244. CC-31244 showed no cytotoxicity, no inhibition in hERG, and no mitochondrial toxicity. CC-31244 did not inhibit CYP450 isoforms, and showed no significant drug-drug interactions or genotoxicity. Rat PK of CC-31244 showed a favorable PK profile (44% oral bioavailability), and the drug exposure level in the rat liver at 4 hours post-dose was >1,000x the drug level measured in a genotype 1b replicon EC₅₀. Conclusion: A pan-genotypic NNI lead, CC-31244, demonstrated potent HCV antiviral activity, in vitro safety and a good pharmacokinetic profile. Given this favorable preclinical activity and safety profile, CC-31244 has been selected to advance to Phase 1 clinical studies in 2016.

Disclosures:
Tony Whitaker - Employment: Cocrystal Pharma, Inc
Tamara McBryar - Employment: Cocrystal Pharma
Luz Pascual - Employment: Cocrystal Pharma Inc.; Stock Shareholder: Cocrystal Pharma Inc.

The following people have nothing to disclose: Irina Jacobson, Michael Feese, Hong Xiao, Lothar Uher, Biing Lin, Emiliano J. Sanchez, Robert J. Tomkiewicz, Judy Pattassery, Sam Lee

LB-22
Prevalence and Impact of Baseline NSA Resistance Associated Variants (RAVs) on the Efficacy of Elbasvir/Grazoprevir (EBR/GZR) Against GT1a Infection

Ira M. Jacobson¹, Ernest Asante-Appiah², Peggy Wong², Todd A. Black², Anita Y. Howe², Janice Wah², Michael Robertson², Bach-Yen T. Nguyen², Melissa Shaugnessy², Peggy Hwang², Eliv Barr², Daria Hazuda², ¹Mount Sinai Beth Israel, New York, NY; ²Merck & Co., Inc., Kenilworth, NJ

Background and Aims: A 12-week EBR/GZR regimen (no ribavirin [RBV]) is highly effective in GT1a patients. Virologic failure (VF) occur mainly among patients in whom population sequencing at baseline [BL] identified substitutions at NS5A resistance-associated positions 28, 30, 31, S8, or 93 that reduce EBR potency 25-fold in vitro (5XRAVs). In GT1a patients who received 16 weeks of GZR/EBR+RBV, no VFs were observed despite the presence of 5XRAVs. We assessed the association between presence of BL NS5A RAVs and SVR12 using a more sensitive next generation sequencing (NGS) assay on BL samples from treatment-naïve (TN) or experienced (TE) GT1a patients in Phase 3 trials. Methods: NGS (Illumin a MiSeq) deep sequencing was performed on BL samples from 355/362 and 54/55 subjects who received 12 weeks of EBR/GZR (no RBV) or 16 weeks of EBR/GZR+RBV, respectively, in Phase 3 trials and had BL NS5A results. Using NGS sensitivity thresholds (ST) from 20% to 1% (i.e., the fraction of virus sequences bearing RAVs, with maximum sensitivity at 1%), the prevalence of BL NS5A RAVs and their impact on efficacy were assessed. Specific BL RAVs that predicted failure were defined. Results: 12 week/no RBV: 335/355 (94%) achieved SVR12; 20 had VF, of whom 16 were patients with BL 5XRAVs. Compared with the 1% ST, a 20% ST conferred much greater specificity/minimally less sensitivity in identifying VFs (Table). The 20% ST missed only one BL5XRAV patient with VF, while at 1% ST, 20 more patients with BL 5XRAVs were identified but only one had VF. Only BL substitutions at positions 30, 31, S8 were associated with VF. At the 20% ST, patients with such RAVs constituted only 5.6% of the overall TN/TE GT1a population. In patients without these BL RAVs, including hard-to-cure patients (e.g., TE cirrhotics), a 12-week/no RBV regimen resulted in 99% SVR12. 16 week/RBV: All patients with BL NS5A RAVs achieved SVR12. Conclusion: Among GT1a patients, baseline NGS (20% ST) identifies a small group of patients harboring NS5A RAVs that reduce the efficacy of a 12 week/no RBV EBR/GZR regimen. The 12 week/no RBV regimen yielded a 99% SVR12 in patients lacking these RAVs. The impact of such RAVs on efficacy was no longer seen among patients given 16 weeks of EBR/GZR+RBV.

<table>
<thead>
<tr>
<th>ST</th>
<th>BL NS5A RAV</th>
<th>SVR12 (No RBV)</th>
<th>SVR12 (With RBV)</th>
<th>%Patients with BL NS5A Associated VFs Identified</th>
<th>EBR/GZR 12 weeks</th>
<th>EBR/GZR+RBV 16 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>5XRAV</td>
<td>307/311 (99%)</td>
<td>284/284 (64%)</td>
<td>12.4%</td>
<td>16/16 (100%)</td>
<td>16/16 (100%)</td>
</tr>
<tr>
<td>20%</td>
<td>5XRAV</td>
<td>326/331 (98%)</td>
<td>92/92 (80%)</td>
<td>7.0%</td>
<td>15/15 (94%)</td>
<td>15/15 (94%)</td>
</tr>
<tr>
<td>20%</td>
<td>RAV at position 30,31,58</td>
<td>330/335 (99%)</td>
<td>5/20 (25%)</td>
<td>5.6%</td>
<td>15/15 (94%)</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>RAV at position 30,31,58</td>
<td>51/51 (100%)</td>
<td>3/3 (100%)</td>
<td>5.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disclosures:
Ira M. Jacobson - Consulting: AbbVie, Achillion, Alnylam, Bristol Myers Squibb, Enanta, Gilead, Janssen, Merck; Grant/Research Support: AbbVie, Bristol Myers Squibb, Gilead, Janssen, Merck, Tobira; Speaking and Teaching: AbbVie, Bristol Myers Squibb, Gilead, Janssen
Ernest Asante-Appiah - Employment: Merck
LB-23
Complete cure after three weeks of all-oral triple-direct acting antiviral (DAAs) regimens in non-cirrhotic chronic hepatitis C genotype 1b Chinese subjects (SODAPI STUDY)

Background/Purpose: DAAs have a high cure rate and favorable tolerability in persons infected with hepatitis C virus (HCV). However, shorter courses could improve adherence, affordability and increase DAAs accessibility. We postulated that the addition of an NS3 protease inhibitor to dual NS5A-NS5B (nucleoside) inhibitors would enhance antiviral efficacy and reduce treatment duration to 3 weeks (wks) in individuals with a rapid virologic response (RVR) defined as plasma HCV RNA <500 IU/mL by day 2. Methods: In this pilot, response was defined as plasma HCV RNA <25 IU/mL (limit of detection) was shorter in group 1 as compared to group 3 (p = 0.01). All 18 subjects who had RVR and 3 weeks DAAs achieved SVR12. There were no discontinuations or significant adverse events reported. Conclusions: This proof-of-concept SODAPI study explored RGT to shorten the duration of HCV treatment. The results strongly suggest that administration of potent triple regimens containing NS3, NS5A and NS5B HCV-inhibitors leads to RVR (plasma HCV RNA < 500 IU/mL) within 2 days in two-thirds of non-cirrhotic HCV GT 1b-infected subjects. 100% of subjects with RVR and had treatment for 3 wks, achieved SVR12, with excellent adherence and tolerability. Future studies exploring this RGT concept are recommended to reduce duration of therapy, cut drug costs, and to significantly improve accessibility and adherence. (ClinicalTrials.gov number NCT02470858)

Disclosures:
George K. Lau - Consulting: Roche, Novartis, Roche, Novartis, Roche, Novartis, Roche, Novartis, Jinlin Hou - Consulting: Roche, GSK, Novartis, BMS; Grant/Research Support: Roche, GSK, Novartis.

The following people have nothing to disclose: Yves Benhamou, Guofeng Chen, Jin Li, Qing Shao, Dong Ji, Fan Li, Bing Li, Jialiang Liu, Jian Sun, Cheng Wang, Jing Chen, Vanessa Wu, April Wong, Lei Po, Chris Wong, Stella Tsui Ying Tsang, Wang Yudong, Ruian Ke.
Huh7 cells, the tumor suppressor miR-615-5p repressed mTOR and inhibited NKG2D ligand (ULBP2) halting NK cell recognition ability, in converse, the oncomiR miR-155 elevated mTOR and upregulated ULBP2. Consistent with the previous results, miR-615-5p and miR-155 over-expressing NK cells displayed significantly lower and higher cytotoxicity respectively against Huh7 cells compared with the mock untransfected NK cells. In conclusion, miR-615-5p and miR-155 have contradicting roles in NK cells compared to its target hepatocytes by targeting IG-FIR. Therefore miR-155 might be a potential miRNA enhancing NK cell cytotoxicity, while miR-615-5p is preferentially utilized in target hepatocytes as a tumor suppressor. This provides a novel insight, paving the road for correction of NK functional impairment and eventually an efficient immunotherapy.

Disclosures:
Imam Waked - Advisory Committees or Review Panels: Janssen; Speaking and Teaching: Hoffman L Roche, Merck, BMS, Gilead, AbbVie
The following people have nothing to disclose: Mai A. Rahman, Rana A. Youness, Asmaa Gomaa, Gamal Esmat, Hend M. El Tayebi, Ahmed I. Abdelaziz

LB-25

Eomesh_i Tbetl_o CD56bright natural killer cells: a functionally distinct liver resident population

Cathal Harmon1, Ronan Fahey1, Sarah Whelan1, Diarmuid D. Houlihan2, Justin Geoghegan3, Cliona O’Farrelly1,3; 1Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland; 2Liver Unit, St Vincent’s University Hospital, Dublin, Ireland; 3School of Medicine, Trinity College Dublin, Dublin, Ireland

Natural Killer (NK) cells are innate lymphocytes crucial for anti-viral and tumour immunity. NK cells are enriched in human liver, accounting for 30-50% of lymphocytes compared to 5-10% in peripheral blood (PB). We have previously demonstrated the presence of haematopoietic precursors in the adult human liver. We believe these are capable of differentiating into mature NK cells in situ. NK cell development is a complex process; however the transcription factors EOMES and T-BET have been identified as key regulators of this process. We aimed to characterise the phenotype, function and transcription factor usage of hepatic NK cells in liver perfusate. During transplantation, Wisconsin preservative-perfused donor livers ($n=18$) were flushed with saline and mononuclear cells from this perfusate and matched blood samples were assessed by flow cytometry for activatory and inhibitory receptors NKG2C, NKG2D, Nkp44, Nkp46, NKG2A, intracellular perforin and granzyme B and the transcription factors, T-BET and EOMES. NK cell function was assessed by CD107a and IFN-g expression in response to MHC class I deficient target cells. Over 40% of liver lymphoid cells were NK cells (25.7-67.1%). CD56bright NK cells are enriched in liver perfusate (41.3±9.7%) compared to PB (10.8±3.7%). These cells showed increased expression of activatory receptors NKG2D (p=0.001), Nkp46 (p=0.006) and Nkp44 (p=0.004). Hepatic NK cells differ in expression of cytotoxic molecules, with reduced Granzyme B and increased Perforin in CD56bright liver NK cells (p=0.03). Hepatic CD56bright cells show greater CD107a expression than CD56bleft cells in response to target cells (p=0.0006). Hepatic CD56bright NK cells showed increased expression of EOMES and reduced T-BET. This EOMESh_i T-BETo phenotype was absent from PB NK cells. The majority of these cells express CXC$$\gamma$$R6, a chemokine receptor associated with tissue residency. We believe these cells may develop locally from populations of NK cell precursors (0.57±0.27%). In this study we describe a unique hepatic population of EOMESh_i T-BETo CD56bright NK cells which are phenotypically distinct from peripheral blood and show enhanced cytotoxicity. We believe these cells generate from local lymphoid precursors and continue to differentiate after transplantation.

Disclosures:
The following people have nothing to disclose: Cathal Harmon, Ronan Fahey, Sarah Whelan, Diarmuid D. Houlihan, Justin Geoghegan, Cliona O’Farrelly
Conclusions. These real-life data indicate that waitlisted patients: 1. SOF/R appears to be safe and effective in preventing viral recurrence after LT also in decompensated cirrhosis, and 2. viral clearance is associated to a significant improvement of liver function within months in a proportion of patients with advanced cirrhosis. If strengthened and confirmed longer, this latter finding may lead to inactivation and even delisting of some of these patients without HCC.

Disclosures:
Paola Carrai - Consulting: Gilead
Paolo Caraceni - Advisory Committees or Review Panels: GSK; Consulting: BMS; Grant/Research Support: Grifols; Speaking and Teaching: Baxter, Kerditon
The following people have nothing to disclose: Silvia Martini, Maria F. Donato, Chiara Mazzarelli, Maria Rendina, Daniela Filli, Alice Gianstefani, Ubaldo Visco Comandini, Stefano Fagioli, Pierluigi Russo, Sandra Petraglia, Simona Montilla, Luca Pani

LB-27
The Italian Compassionate use of Sofosbuvir (ITACOPS) in patients with recurrent HCV hepatitis after liver transplantation: virological and clinical outcomes and safety from a national real-life experience
Paola Carrai1, Maria Cristina Morelli2, Maria Rosa Tamè3, Ilaria Lenci4, Patrizia Burra5, Paolo Angel6, Roberto Ganga7, Giada Pietros8, Rosa Maria lem9, Sherrie Bh9,10, Francesco Paolo Russo11, Guido Pia12, Carmine Coppola13, Simona Montilla14, Pierluigi Russo14, Sandra Petraglia14, Luca Pani14, Silvia Martini15, Pierluigi Toniutto15,16, Hepatobiliary and Liver Transplant Surgery, University of Padova, Padova, Italy; 2Liver Transplant and Transplant Unit, University of Padova, Padova, Italy; 3Internal Medicine, University of Padova, Padova, Italy; 4Department of Medicine, University of Cagliari, Cagliari, Italy; 5Liver Transplant Medical and Surgical Unit, University of Bologna, Bologna, Italy; 6Gastroenterology, University of Bologna, Bologna, Italy; 7Department of Experimental Medicine and Surgery, Tor Vergata, Roma, Roma, Italy; 8Multivisceral and Transplant Unit, University of Padova, Padova, Italy; 9Internal Medicine, University of Cagliari, Cagliari, Italy; 10Department of Medicine, Hepatology Unit, IRCCS-ISMETT, Palermo, Palermo, Italy; 11Transplant Surgery and Gastroenterology Unit, University of Modena, Modena, Italy; 12National Cancer Institute, Milano, Milano, Italy; 13Gastroenterology, University of Padova, Padova, Italy; 14Hepatic Physiopathology, Caserta, Caserta, Italy; 15Liver Unit, Hospital of Gragnano, Gragnano, Italy; 16Italian Drug Agency (AIFA), Roma, Roma, Italy; 17Hepatology and Gastroenterology Unit, University of Torino, Torino, Italy; 18Medical Liver Transplant Unit, Internal Medicine, University of Udine, Udine, Italy

Background/aims. New IFN-free regimens have the highest expectations of care in recurrent hepatitis C (RHC) after liver transplantation (LT). This study aimed to evaluate the virological and clinical efficacy of the combination of Sofosbuvir and Ribavirin (SOF/R x 12 wks) for 24 weeks in treating RHC within the frame of a compassionate program sponsored by the Italian Drug Agency (AIFA). Methods. Patients with RHC and METAVIR F3-F4 were prospectively enrolled and received daily SOF (400 mg) plus R (400-1200 mg) for 24 weeks. Clinical and virological data were collected at baseline and at regular intervals. Serum HCV-RNA undetectable by Real Time PCR 24 weeks after the start of treatment and 4 and 12 weeks thereafter defined end of treatment viral response (EOT), sustained viral response at 4 (SVR 4) and at 12 (SVR 12) weeks. Results. This preliminary analysis refers to 330 patients (252 males, median age 61 years) out of 609 that completed 24 weeks of therapy and had data on SVR 4. HCV genotype frequencies were: 1a (19%), 1b (58%), 2 (5%), 3 (14%) and 4 (4%). Median (range) basal HCV-RNA was 1.8x10^5 IU/ml (38-1x10^9). Two hundred five (77%) patients failed previous treatments and 210 (69%) had cirrhosis. Tocilimus or cyclosporin was used in 58.5% and 41.5% of patients. In cirrhotics, basal median (range) Child-Pugh (CP) and MELD scores were 5 (5-10) and 9 (7-20). EOT was achieved in 329/330 (99.7%) and SVR 4 in 284/330 (86.3%) patients. SVR 12, available in a subgroup of 207 patients, was achieved in 201 (97.1%) of them. No significant differences in SVR4 were observed between HCV genotype 1 Vs other genotypes (83.3% Vs 88.1%, p=0.95) or using median daily R ≤500 mg (91% Vs 85%, p=0.12) A significant better SVR4 rate was observed in patients with METAVIR F3 compared to those with F4 (93.5% Vs 85.3%, p=0.033) and in cirrhotics with CP score of 5 Vs CP >5 (92.7% Vs 76.4%, p=0.002). Compared to baseline, a significant difference in mean CP score values 4 weeks after the end of treatment was observed between patients with and without SVR4 (from 5.98 to 5.65 Vs 7.64 to 8.91, p=0.018). At multivariate analysis, in the whole population the only independent predictor of SVR4 failure was METAVIR F4 (O.R. 6.58, C.I. 1.48-29.3, p=0.002) while in cirrhotics was CP score >5 (O.R. 11.8, C.I. 2.57-53.8, p<0.001). In 29% of patients the R-induced anemia was treated by EPO. No significant drug interactions and no deaths related to antivirals were reported. Conclusions. This large real-life study indicates that SOF/R combination therapy for 24 weeks is a very effective and tolerated treatment for RHC, particularly in patients with less severe RHC or in those with CP5 cirrhosis.

Disclosures:
Paola Carrai - Consulting: Gilead
Paolo Angel - Advisory Committees or Review Panels: Sequana Medical
Sherrie Bh - Speaking and Teaching: Bayer, BTO
The following people have nothing to disclose: Maria Cristina Morelli, Maria Rosa Tamè, Ilaria Lenci, Patrizia Burra, Roberto Ganga, Giada Pietrosi, Rosa Maria lem, Francesco Paolo Russo, Guido Pia, Carmine Coppola, Simona Montilla, Pierluigi Russo, Sandra Petraglia, Luca Pani, Silvia Martini, Pierluigi Toniutto

LB-28
Efficacy and Tolerability of a 12 week Course of Sofosbuvir-based HCV Antiviral Therapy without Ribavirin for Treatment of Recurrent HCV Genotype 1 Infection after Liver Transplantation
Molly S. Hassett, Heather O’Dell, David S. Raiford, Christie B. Truscott, Chan Y. Chung, Natasha J. Schneider, Andrew Scanga, Roman Porayko; Liver Transplant, Vanderbilt University, Nashville, TN

Aims: To evaluate sustained viral responses (SVR) and potential adverse events in patients with recurrent hepatitis C (HCV) infection after liver transplantation (LT) who underwent 12 weeks (wks) of therapy with either simeprevir/sofosbuvir (SIM/SOF) or ledipasvir/sofosbuvir (LDV/SOF) without ribavirin (RBV) x 12 wks. Background: Recurrent HCV infection after LT has been associated with accelerated rates of liver allograft fibrosis & reduced response rates to conventional antiviral therapy. Treatment with new direct acting antiviral medications has resulted in the ability to treat earlier in the post-LT course with greater efficacy & tolerability than ever before. However, given the unique characteristics of this immunosuppressed population, the current clinical guidelines (AASLD-IDSA) continue to recommend treating patients with recurrent HCV genotype 1 (G1) infection with regimens that contain ribavirin when treating for 12 wks or extending therapy to 24 wks in those intolerant to RBV. Previously, the use of RBV as part of the antiviral regimen has been associated with anemia and the potential to worsen renal function in the setting of nephrotoxic immunosuppression. Methods: We examined the results of 66 LT recipients having documented recurrent HCV G1 infection who were treated with either SIM/SOF or LDV/SOF for 12 wks without RBV. Although fatigue and headache were reported,
none of the patients had to interrupt or discontinue therapy due to adverse events. **Conclusions:** We observed excellent responses when treating LT patients with recurrent HCV GT1 using combinations of SIM/SOF or LDV/SOF without ribavirin for 12 wks. Given the improved tolerability of these treatment regimens, most patients were able to initiate antiviral therapy earlier in their post-LT course, prior to the development of more advanced fibrosis. These response rates are comparable or better than those previously reported in this unique patient population. Further corroboration of these data may result in the elimination of the need for RBV in 12 wk treatment regimens or for extended duration (24 wk) antiviral therapy in post-LT patients.

<table>
<thead>
<tr>
<th>SIM/SOF</th>
<th>LDV/SOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients (N)</td>
<td>48</td>
</tr>
<tr>
<td>Rx experienced</td>
<td>35</td>
</tr>
<tr>
<td>Stage 3 - 4 fibrosis</td>
<td>10</td>
</tr>
<tr>
<td>GT1a</td>
<td>38</td>
</tr>
<tr>
<td>Viral load >600000 IU/mL</td>
<td>11</td>
</tr>
<tr>
<td>Viral relapse</td>
<td>3</td>
</tr>
<tr>
<td>SVR (%)</td>
<td>45 (95%)</td>
</tr>
</tbody>
</table>

Disclosures:
The following people have nothing to disclose: Molly S. Hassett, Heather O’Dell, David S. Rainford, Christie B. Truscott, Chan Y. Chung, Natasha J. Schneider, Andrew Scanga, Roman Perri, Michael K. Porayko

LB-29
Decline in Hepatitis C Virus-related Liver Transplantation Waitlist Registrations among Patients without Hepato-cellular Carcinoma: Early Effect of Direct-Acting Antivirals?

Ryan B. Perumpail1, Robert J. Wong2, Channa R. Jayasekera3, Stevan A. Gonzalez4, Jeffrey S. Glenn1, Zobair M. Younossi5,6, Aijaz Ahmed1; 1Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA; 2Division of Gastroenterology and Hepatology, Alameda Health System, Highland Hospital, Oakland, CA; 3Department of Transplantation, California Pacific Medical Center, San Francisco, CA; 4Division of Hepatology, Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX; 5Department of Medicine, Center for Liver Disease, Inova Fairfax Hospital, Falls Church, VA; 6Betsy and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA

Background: Hepatitis C virus (HCV) infection is the leading indication for liver transplantation (LT) in the U.S. In late 2013, the U.S. Food and Drug Administration (FDA) first approved second-generation direct-acting antiviral (DAA) agents for the treatment of HCV infection – simprevir on November 22, 2013, and sofosbuvir on December 6, 2013. DAA therapy has been prioritized in patients with HCV-related cirrhosis in an effort to retard clinical progression and induce regression of hepatic histologic damage. Our study aims to analyze the impact of DAA therapy on new waitlist registrations (NWR) for LT in non-HCC HCV patients from Jan. 2014 to Mar. 2015 among HCV patients without hepatocellular carcinoma (HCC) using the unpaired t test. Results: From Aug. 2012 to Mar. 2015, the range for NWR for all indications of LT varied from 740 to 976 each month. The proportion of all NWR for LT represented by HCV patients declined 23.0% (34.8% in Aug. 2012 and 26.8% in Mar. 2015). Moreover, the proportion of all NWR for LT among HCV patients without HCC declined 33.0% (23.0% in Aug. 2012 and 15.4% in Mar. 2015). There was a statistically significant decline in NWR for LT in non-HCC HCV patients from Jan. 2014 to Mar. 2015 (mean, 153 per month) compared to Aug. 2012 to Oct. 2013 (mean, 188 per month) (mean difference 35.0, 95% confidence interval [19.7, 50.2], p<0.0001). Among HCV-related NWR for LT, the proportion of patients without HCC declined 12.5% (66.3% in Aug. 2012 and 58.0% in Mar. 2015) (Figure). Numerically, while the absolute number of NWR for HCC HCV LT remained stable, NWR for non-HCC HCV LT declined significantly, resulting in the rising percentage for HCC HCV noted in the Figure. Conclusions: We report a statistically significant downtrend in NWR for LT among HCV patients without HCC following the introduction of second-generation DAA agents. Our study is limited by its retrospective design.

Disclosures:
The following people have nothing to disclose: Ryan B. Perumpail, Robert J. Wong, Channa R. Jayasekera, Jeffrey S. Glenn

LB-30
A Novel Randomized, Double-blind, Placebo-controlled Study of Lusutrombopag for Thrombocytopenia in Patients with Chronic Liver Disease Undergoing Elective Invasive Procedures in Japan (L-PLUS 1)

Namiki Izumi1, Yukio Osaki2, Kazuhide Yamamoto3, Mineo Kurokawa4, Katsuki Tanaka5, Takeshi Kano6, Takahiro Fujihara7, Toshimitsu Ochiai7, Michio Imawari1; 1Musashino Red Cross Hospital, Tokyo, Japan; 2Osaka Red Cross Hospital, Osaka, Japan; 3Okayama University, Okayama, Japan; 4The University of Tokyo, Tokyo, Japan; 5Yokohama City University Medical Center, Yokohama, Japan; 6Shionogi & Co., Ltd., Osaka, Japan; 7Shin-Yurigaoka General Hospital, Kawasaki, Japan

Purpose: Thrombocytopenia is common in patients (pts) with chronic liver disease (CLD). These pts often receive platelet transfusions as standard therapy in preparation for invasive procedures. Lusutrombopag (LUSU), an oral thrombopoietin receptor agonist, upregulates platelet production. This multicenter study evaluated the efficacy and safety of LUSU versus (vs) placebo (PBO) in thrombocytopenic pts with CLD undergoing elective invasive procedures. **Methods:** Pts with CLD
who had a platelet count (PTC) <50,000/μL and a planned invasive procedure were randomized (1:1) to receive a LUSU 3-mg tablet or matching PBO once daily for up to 7 days. Platelet transfusion was required for all pts with a preoperative PTC <50,000/μL. The primary endpoint was the proportion of pts who required no preoperative platelet transfusion. Key secondary endpoints were the proportion of responders (pts who attained a PTC ≥50,000/μL with a ≥20,000/μL increase from baseline) and duration of PTC increase. Results: Of 97 pts randomized, 96 (48 in each treatment arm) received LUSU or PBO. Baseline characteristics were balanced in the 2 arms. Mean baseline PTC was 40,400/μL. Common invasive procedures included percutaneous liver ablation (42.7%), transcatheter arterial chemoembolization (25.0%), and endoscopic variceal ligation (14.6%). The proportion of pts who required no preoperative platelet transfusion was significantly greater with LUSU (79.2% [38/48 pts]) than with PBO (12.5% [6/48 pts]) (P<0.0001). The proportion of responders was significantly greater with LUSU (77.1% [37/48 pts]) than with PBO (6.3% [3/48 pts]) (P<0.0001). The number of days (d) (median) on which the PTC was ≥50,000/μL was significantly greater with LUSU (22.1 d without platelet transfusion) than with PBO (3.3 d with platelet transfusion) (P<0.0001). Adverse events (AEs) were reported for 93.8% (45/48) of LUSU-treated pts and 100% (48/48) of PBO-treated pts. Frequently reported AEs (>20%) in both arms were postoperative fever (LUSU, 39.6%; PBO, 56.3%), procedural pain (45.8%; 41.7%), procedural hypertension (41.7%; 41.7%), and increased AST (31.3%; 31.3%). Increased ALT was also a frequent AE in PBO-treated pts (20.8%). The incidence of bleeding-related AEs was lower in the LUSU arm (14.6%) than in the PBO arm (27.1%). Protocol-required CT/MRI revealed 1 thromboembolic event of the portal venous system in each arm, neither of which was related to PTC. No pts died or discontinued due to an AE. Conclusions: LUSU was an efficacious and well tolerated alternative to platelet transfusion in thrombocytopenic pts undergoing elective invasive procedures. A global Phase 3 (L-PLUS 2) study is ongoing.

Disclosures:
Takeshi Kano - Employment: Shionogi Co., Ltd.
Takahiro Fukuhara - Employment: Shionogi Co., Ltd.
Toshimitsu Ochiai - Employment: Shionogi Co., Ltd.

The following people have nothing to disclose: Kazuhide Yamamoto, Katsuaki Tanaka

LB-31
Cysteamine Bitartrate Delayed-Release (DR) for the Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in Children (CyNCh) Trial
Jeffrey B. Schwimmer,1,2 Joel E. Lavine,3 Brent A. Neuschwander-Tetri,4 Laura Wilson,5 Stavra A. Xanthakos,5 Sarah E. Barlow,6 Miriam B. Cox7, Jean P. Mollaston,5 Peter F. Whittington,8 Philip Rosenthal,9 Ajay K. Jain,11 Karen F. Murray12, Elizabeth M. Brun13, David E. Kleiner14, Mark L. Van Natta,5 Jeanne M. Clark,5 James Tonnasic,5 Edward Doo,15 1Pedicatrics, UC San Diego, San Diego, CA; 2Gastroenterology, Rady Children’s Hospita, San Diego, CA; 3Pedicatrics, Columbia University, New York, NY; 4Medicine, Saint Louis University, St Louis, MO; 5School of Public Health, Johns Hopkins, Baltimore, MD; 6Pedicatrics, Cincinnat Ni Children’s Hospital, Cincinnati, OH; 7Pedicatrics, Texas Children’s Hospital, Houston, TX; 8Pedicatrics, Riley Children’s Hospital, Indianapolis, IN; 9Pedicatrics, Lurie Children’s Hospital, Chicago, IL; 10Pedicatrics, UCSF, San Francisco, CA; 11Pedicatrics, Saint Louis University, St Louis, MO; 12Pedicatrics, Seattle Children’s Hospital, Seattle, WA; 13Pathology, Washington University, St Louis, MO; 14Pathology, NCI, Bethesda, MD; 15Medicine, John Hopkins, Baltimore, MD; 16Liver Disease, NIDDK, Bethesda, MD; 17Pedicatrics, Emory University, Atlanta, GA

Objective: NAFLD, the most common cause of chronic liver disease in children, lacks an approved treatment. Treatment of pediatric NAFLD with cysteamine decreased ALT and AST and increased adiponectin in a 6 month pilot study. Based on this preliminary evidence, the CyNCh trial compared cysteamine bitartrate DR (CyB) to placebo for the treatment of NAFLD in children using liver histology as the primary outcome. Methods: CyNCh was a multicenter, double-masked, randomized, placebo-controlled, phase IIb clinical trial conducted by the NIDDK NASH CRN from June 2012 to August 2015. Children ages 8-17 y with a NAFLD Activity Score (NAS) ≥4 were randomly assigned 1:1 (stratified by center and weight stratum) to receive twice daily oral CyB (300 mg if ≤65 kg, 375 mg if >65-80 kg or 450 mg if >80 kg) or matching placebo for 52 weeks. The primary outcome was improvement in liver histology, defined as a decrease in NAS ≥2 points without worsening of fibrosis; children without follow-up biopsies were counted as unimproved in the intention-to-treat (ITT) analyses. All participants received standardized lifestyle advice.

Results: 169 children were randomly assigned to receive CyB (n=88) or placebo (n=81). The mean (SD) age was 13.7 (2.7) and 70% were boys. Follow-up liver biopsy was obtained in 81% (71/88) of children taking CyB and 93% (75/81) of children taking placebo (p<0.03). There was no significant difference in the rates of histologic improvement between groups (CyB 28% [25/88] vs placebo 22% [18/81]; relative improvement ratio=1.3, 95% CI: 0.8-2.1, p=0.34). ITT analyses of 4 individual histologic features showed no significant difference [Bonferroni corrected differences between CyB and placebo comparing initial to end-of-treatment improvement in steatosis (30% vs 41%, p=0.15), ballooning (19% vs 26%, p=0.29), lobular inflammation (36% vs 21%, p=0.03), or fibrosis (28% vs 28%, p=0.98). Children receiving CyB had a greater mean (SD) change in ALT (-53 [88] vs -8 [77] U/L, p=0.02) and AST (-31 [52] vs -4 [36] U/L, p=0.008) compared to placebo. Reductions in aminotransferases with CyB treatment occurred within the first 4 weeks and were sustained through 52 weeks of treatment. Serum lipids, cholesterol, and insulin sensitivity were unchanged. There was no difference in adverse events for children taking CyB compared to placebo. Conclusion: One year of treatment with cysteamine bitartrate DR was safe, but did not improve liver histology in children with NAFLD compared to placebo. In contrast, there were substantial and
A new botanical drug, HL tablet, reduces significantly hepatic fat by MR spectroscopy in patients with nonalcoholic fatty liver disease: a placebo-controlled, randomized, Phase II clinical trial

Yeon Kim1, Sung Woon Hong1, Mi Hyung Lim1, Jong Hwan Lim6, Sung Hum Yeon7, Yang Hyun Baek2, Yong Kyun Cho3, Joo Hyun Sohn4,5; 1Clinical Research Team, Huons Co., Ltd, Ansan, Korea (the Republic of); 2Internal Medicine, Dong-A University of Medicine, Busan, Korea (the Republic of); 3Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of); 4Hanyang University College of Medicine, Seoul, Korea (the Republic of); 5Internal Medicine, Hanyang University Guri Hospital, Guri, Korea (the Republic of); 6Preclinical Research & Development Team, Huons Co., Ltd, Ansan, Korea (the Republic of); 7Botanical Drug Research Team, Huons Co., Ltd, Ansan, Korea (the Republic of)

[Background] The demand of new drugs for nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Magnolia officinalis is a traditional herbal medicine that has been used to treat various liver diseases. HL tablet is a new botanical drug extracted from magnolia officinalis. This study is aimed to evaluate the effect and safety of HL tablet in the treatment of patients with NAFLD.

[Methods] A placebo-controlled, parallel, multi-centered, randomized, double-masked, Phase II clinical trial: 74 patients with NAFLD diagnosed by ultrasonic examination were given HL tablets of low dose group (100mg/day), high dose group (300mg/day), or placebo by equal chance (1:1:1) twice daily for 12 weeks. Safety analysis set, full analysis set and per protocol set was analyzed in 73, 68, and 60 subjects, respectively. The primary endpoint was pre and post-treatment variation of hepatic fat content by magnetic resonance spectroscopy (MRS). Secondary endpoints included pre and post-treatment variation of serum AST, ALT, cholesterol, triglyceride, free fatty acid (FFA), homeostasis model assessment-estimated insulin resistance (HOMA-IR), and body mass index (BMI). [Results] Compared with placebo group, HL significantly reduced the mean hepatic fat content by MRS in a dose-dependent manner (mean change, high dose vs. placebo, -1.71 vs. +0.63, p=0.0328; variation rate compared to baseline, high dose: -12.14%±23.46, low dose: -3.21%±31.98, and placebo: 7.56%±43.98). Serum AST and ALT had shown its tendency to decrease in the groups of HL tablet. Other factors (cholesterol, triglyceride, FFA, HOMA-IR, and BMI) were not affected by the treatment of HL tablet or placebo. There was no drug related safety issues during the study. [Conclusion] Despite the short-term treatment only for 12 weeks, HL tablet has shown effectiveness on the reduction of hepatic fat content by MRS without any negative lipid profile, BMI change and adverse effects. Larger extended trials are warranted to assess the long-term efficacy of HL tablet. (ClinicalTrials.gov number, NCT02491905.)

Disclosures:
The following people have nothing to disclose: Yeon Kim, Sung Woon Hong, Mi Hyung Lim, Jong Hwan Lim, Sung Hum Yeon, Yang Hyun Baek, Yong Kyun Cho, Joo Hyun Sohn