New Liver Injury Biomarkers

Jeff Lawrence and the C-Path PSTC Hepatotoxicity Working Group

24-Mar-2011
New Hepatotoxicity Biomarkers

Needs

Preclinical Needs
- ALT changes in the absence of histopathological evidence of injury
- Absence of preclinical liver signals that do appear in clinical trials
- Poorly or unmonitorable liver changes
 - Microvesicular steatosis
 - Hepatocellular proliferation
 - *Biliary epithelial hyperplasia*
 - *BSEP inhibition*
 - Hepatic inflammation
 - *Oxidative stress*

Clinical Needs
- detect susceptibility to DILI prior to drug exposure
- detect susceptibility to DILI during drug exposure
- differentiate DILI from other causes of liver injury
- predict the course of DILI once it occurs
- Mild or transient aminotransferase changes

Objectives

1. Distinguish transient (adaptive) changes from serious liver injuries associated with progressive liver functional loss and liver failure, i.e., better Hy’s law
2. Distinguish ALT changes associated with *bona fide* liver injury from those not associated with liver injury (no histological indication of injury)
3. Improve differentiation of liver injury from injuries of other organs, e.g. muscle

Other efforts are in blue italics
Now that we know what we want, how do we do it?

- Applications/Claims/Context of use
- Technical Assay Validation
 - fit for purpose
- Highly annotated samples to analyze
 - Standard histopathology lexicon (Histopathology Practices Guide)
 - Samples from studies to address:
 - Liver injury with various severities
 - Chemical/mechanistic diversity in liver injury induction
 - Transient liver injury
 - Liver injury progression to liver failure
 - Recovery
 - Specificity (skeletal muscle, kidney, heart, inflammation)

- Statistical Analysis Plan
- Engagement of the Regulatory Agencies
 - FDA, EMA, PMDA
- Develop Clinical Translational Plan

Longitudinal sampling
Current Qualification Biomarkers

<table>
<thead>
<tr>
<th>Marker</th>
<th>What will it detect?</th>
<th>Tissue Expression</th>
<th>Liver localization</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine Aminotransferase (ALT)</td>
<td>Injury</td>
<td>Liver, skeletal muscle,</td>
<td>Hepatocytes</td>
<td>Glucose- Alanine cycle</td>
</tr>
<tr>
<td>Glutamate Dehydrogenase (GLDH)</td>
<td>Injury</td>
<td>liver, kidney, muscle, intestine</td>
<td>Hepatocytes (centrilobular)</td>
<td>Amino acid oxidation, urea production</td>
</tr>
<tr>
<td>Malate Dehydrogenase (MDH)</td>
<td>Injury</td>
<td>muscle, kidney, brain, intestine</td>
<td>Hepatocytes (periportal)</td>
<td>TCA cycle</td>
</tr>
<tr>
<td>Glutathione S Transferase-α (αGST)</td>
<td>Injury</td>
<td>liver, adrenal, ovary, stomach, kidney, soleus, testes</td>
<td>Hepatocytes</td>
<td>Glutathione transferase</td>
</tr>
<tr>
<td>Purine Nucleoside Phosphorylase (PNP)</td>
<td>Injury</td>
<td>Bone marrow, intestine, spleen, liver</td>
<td>Hepatocytes, Endothelial, Kupffer</td>
<td>Purine pathway</td>
</tr>
<tr>
<td>Arginase-1 (Arg-1)</td>
<td>Injury</td>
<td>liver</td>
<td>Hepatocytes</td>
<td>Urea cycle</td>
</tr>
<tr>
<td>Paraoxonase-1 (PON1)</td>
<td>Function</td>
<td>liver, diaphragm</td>
<td>Hepatocytes</td>
<td>Esterase, protects lipoproteins from lipid peroxidation</td>
</tr>
<tr>
<td>F-Protein (HPPD)</td>
<td>Injury</td>
<td>Liver</td>
<td>Hepatocytes</td>
<td>allo-4-hydroxyphenylpyruvate dioxygenase</td>
</tr>
<tr>
<td>miR122 (maybe others)</td>
<td>Injury</td>
<td>liver</td>
<td>Hepatocytes</td>
<td>small non-coding RNAs repress translation</td>
</tr>
</tbody>
</table>

Red colored spaces identify diversity from ALT
Sample Inventory

We have compiled a dataset of 32 compounds in 31 studies resulting in a database of 1519 samples with biomarker measurements and corresponding histopathology

• Includes 8 novel (proprietary) compounds
• Liver pathologies include
 • Acute liver injury: multilobular, centrilobular, and periportal necrosis, biliary inflammation, hypertrophy/induction
• Kidney injury
• 8 contributing member companies
• This required extensive curation and QC of the data

New studies/designs
• Discordant ALT/histopathology studies
 • Dexamethasone, 3 proprietary compounds
• Muscle vs liver injury studies
Statistical Analysis

GLDH provides improved specificity without sacrificing sensitivity

__ROC Curves for Comparisons__

ROC Curve Comparison - ALT versus GLDH

From 35 to 18% specificity

Note the improved specificity at high sensitivity

<table>
<thead>
<tr>
<th></th>
<th>AUC (model)</th>
<th>AUC (ALT)</th>
<th>AUC diff.</th>
<th>AUC diff p-value</th>
<th>IDI</th>
<th>Relative IDI</th>
<th>IDI p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPMG</td>
<td>0.908</td>
<td>0.870</td>
<td>0.038</td>
<td>0.001 **</td>
<td>0.126</td>
<td>35.4%</td>
<td><.001 ***</td>
</tr>
<tr>
<td>GLDH</td>
<td>0.903</td>
<td>0.870</td>
<td>0.033</td>
<td>0.006 **</td>
<td>0.096</td>
<td>26.9%</td>
<td><.001 ***</td>
</tr>
<tr>
<td>MDH</td>
<td>0.605</td>
<td>0.870</td>
<td>-0.264</td>
<td><.001 ***</td>
<td>-0.301</td>
<td>-84.7%</td>
<td><.001 ***</td>
</tr>
<tr>
<td>PNP</td>
<td>0.793</td>
<td>0.870</td>
<td>-0.077</td>
<td><.001 ***</td>
<td>-0.063</td>
<td>-17.7%</td>
<td><.001 ***</td>
</tr>
<tr>
<td>PON1</td>
<td>0.766</td>
<td>0.870</td>
<td>-0.104</td>
<td><.001 ***</td>
<td>-0.248</td>
<td>-69.7%</td>
<td><.001 ***</td>
</tr>
</tbody>
</table>
Statistical Analysis
Liver versus kidney injury

- Strong changes with liver injury
- No significant change with kidney injury
- Next assessments
 - Non-necrosis liver pathologies (hypertrophy, biliary epithelial cell hyperplasia)
 - Different forms of Discordant ALT/histopathology mechanisms
 - Muscle versus liver injury
ALT Can Increase Without Histopathological Evidence of Liver injury

- Standard GLP Non-human primate toxicity study - 3 months exposure
- Note the large increase in serum ALT
- **No histopathological evidence of liver or muscle injury**
- Discordant ALT/histopathology finding

- Additional samples assessed for alternative liver injury biomarkers including GLDH and SDH
- Note similar elevations with ALT, AST, and GLDH
- **No elevation with SDH**
 - SDH response provides POC for a new biomarker for this mechanism-how generalizable to other cmpds?
Acetaminophen Study Design
Transient injury, Injury to liver failure, recovery

Study Design

Dose Levels: mkd, po, daily dosing
- Vehicle
- 500 (transient)
- 1000 (transient, severe injury)
- 1500 (severe injury, liver failure)

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Start (D1)</th>
<th>Treatment</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Day:**
 - A: 2, 4, 5, 7, 15, 21
 - B: 4, 6
 - C: 2, 4
 - D: 2
 - E: 2

Note that almost all animals had ALT that were returning to normal with continued dosing through day 7.

Out of 60 animals treated at 1500 mg/kg/day, only 4 mortalities were observed- All other animals adapted.

Mortalities

Serum ALT (IU/L)

Dose (mg/kg) Severity

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Day 2</th>
<th>Day 4</th>
<th>Day 6</th>
<th>Day 8</th>
<th>Day 15</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Min</td>
<td>5/10</td>
<td>0/10</td>
<td>1/10</td>
<td>0/9</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>1000 Min</td>
<td>7/10</td>
<td>3/10</td>
<td>2/10</td>
<td>1/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>1500 Min</td>
<td>1/10</td>
<td>7/10</td>
<td>2/9</td>
<td>1/9</td>
<td>2/10</td>
<td>0/10</td>
</tr>
<tr>
<td>500 Mild</td>
<td>0/10</td>
<td>1/10</td>
<td>0/10</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Mild</td>
<td>3/10</td>
<td>1/10</td>
<td>0/10</td>
<td>0/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 Mild</td>
<td>2/10</td>
<td>4/9</td>
<td>2/9</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
</tbody>
</table>
Improve prediction of severe outcome (liver failure)
i.e., better Hy’s law

- When injury persists without adequate regeneration, functional mass declines
- When functional mass declines below a threshold, bilirubin increases
- Hy’s law (Bili + ALT) is too late (mortality is too high)
- Space for improvement in shaded in red

How much liver mass is required to eliminate bilirubin?

- 100%
- 80%
- 60%
- 40%
- 20% remaining liver mass
How Could We Modulate Liver Mass Via Hepatectomy?

A surgical model would:
- minimize confounding factors
- small molecule non-specificity at toxic does,
- inflammation
- provide better knowledge of the amount of liver mass that has been removed

Hepatectomy Survival

<table>
<thead>
<tr>
<th>% Hepatectomy</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>67%</td>
<td>Variable</td>
</tr>
<tr>
<td>90%</td>
<td>100% @ 7 days</td>
</tr>
<tr>
<td>95%</td>
<td>67% @ 7 days</td>
</tr>
<tr>
<td>97%</td>
<td>0% by 4 Days</td>
</tr>
</tbody>
</table>

* animals that survived to Day 4
Discovering New Liver Functional Mass Biomarkers

- Partial Hepatectomy would provide a way to remove specific amounts of the liver (functional mass)
 - However, the liver is really good at regenerating and its mass is replaced very quickly
- Can we block hepatocyte regeneration?
 - 2-AAF (Solt-Farber model)
- How much liver is needed for survival?
 - Especially if we prevent regrowth

Diagram:
- 2-AAF
- Partial Hepatectomy
- Necropsy
- % remaining liver mass:
 - 80%
 - 50%
 - 33%
 - 10%
- Bleeds
- Time
Conclusions

• The PSTC efforts have established a dialog between the nonclinical scientists, industry clinicians involved in safety monitoring, and the regulatory scientists that has led to a better understanding of DILI biomarker needs.

• Through our work in the PSTC we have endeavored to build agreed upon evidentiary standards of how to assess performance of DILI biomarkers for use in specific contexts.

• Careful study designs are needed to test the context of use in question.
 • General injury study designs cannot test the performance of biomarkers to improve Hy’s law.

• Discovery of biomarkers of liver functional mass require unique study designs to isolate the functional component from the injury component.

• Improved performance of biomarkers depends not on the AUC of the ROC curve, but on where the improvement occurs.
 • This is especially important if improved specificity is the key need.

• There are also needs for more specific biomarkers to help bring novel therapies to patients faster.
Acknowledgements

- Hepatotoxicity WG Qualification Leadership Team
 - Chris Hunt
 - Jim Mayne
 - Karamjeet Pandher
 - David Raunig
 - Shelli Schomaker

- PSTC Advisory Committee and Working groups
 - Elizabeth Walker
 - Eric Thompson
 - Phil Rossi
 - Cassandra Mtine
 - Nick King
 - Rich Miller

- Amgen
 - Nancy Everds
 - Jim Reindel
 - Mark Smith

PSTC Hepatotoxicity Working Group

<table>
<thead>
<tr>
<th>Company</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>David Desmond, Eric A Blomme, Jon Maher</td>
</tr>
<tr>
<td>Amgen</td>
<td>Jeff Lawrence</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>Gerry Kenna, Mark H Steinberg, Matt Jacobsen, Yvonne Dragan</td>
</tr>
<tr>
<td>Boehringer-Ingelheim</td>
<td>Jing Yuan, Ray Kemper</td>
</tr>
<tr>
<td>Bristol-Myers Squibb</td>
<td>Frederic Moulin</td>
</tr>
<tr>
<td>C-Path</td>
<td>Elizabeth Walker, Eric Thompson, Nick King, Phil Rossi</td>
</tr>
<tr>
<td>Daiichi Sankyo</td>
<td>Martins Adeyemo, Shinya Sehata</td>
</tr>
<tr>
<td>EMA</td>
<td>Sonja Beken, Markku Pasanen</td>
</tr>
<tr>
<td>FDA</td>
<td>Richard Beger, Donna Mendrick, Joseph Hanig, William Salminen</td>
</tr>
<tr>
<td>Genentech</td>
<td>Dylan Hartley, Jacqueline Tarrant</td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>Christine Hunt, Holly Jordan, Jodi Boysza, Lindsey Webster</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>Ameesha Batheja, Michael McMillian, Sofie Starckx</td>
</tr>
<tr>
<td>Lilly</td>
<td>Arie Regev, Craig Thomas</td>
</tr>
<tr>
<td>Merck</td>
<td>Valerie T. Hamilton, Philip Sherratt, Wendy Bailey</td>
</tr>
<tr>
<td>Millennium</td>
<td>Colleen Synan</td>
</tr>
<tr>
<td>Mitsubishi Tanabe</td>
<td>Naoya Masutomi</td>
</tr>
<tr>
<td>Novartis</td>
<td>Armin Wolf, Nandita Shangari</td>
</tr>
<tr>
<td>Pfizer</td>
<td>Denise Robinson-Gravatt, James Mayne, Shashi Ramaiah, Shelli</td>
</tr>
<tr>
<td>Roche</td>
<td>Schomaker, Michael Leach, David Raunig, Dean Li</td>
</tr>
<tr>
<td>sanofi-aventis</td>
<td>Adrian Fretland, Christoph Funk, Heather Workman, Kyle Kolaja</td>
</tr>
<tr>
<td></td>
<td>Douglas Keller, Zaid Jayyosi, Valerie Barlow</td>
</tr>
</tbody>
</table>