Serum microRNA biomarkers for human DILI

Jonathan Moggs

Global Head of Molecular Toxicology, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
Serum microRNA biomarkers for human DILI

- Circulating microRNAs as translational biomarkers for safety, efficacy and disease states
- Liver-enriched microRNAs as promising serum DILI biomarkers
 - Evidence from preclinical models
 - Specificity for acute liver injury in humans
 - Correlation with existing biomarkers of liver injury & patient outcomes
 - Importance of normalisation
 - Investigating mechanisms & kinetics of liver microRNA release into biofluids

- Perspectives
microRNAs

Biological functions & biomarker potential

- small regulatory RNAs ~22nt
- Function: post-transcriptional regulation
- microRNAs are tissue-specific
 - miR-122 is enriched in liver
- Shown to play role in:
 - Embryogenesis & differentiation; Cancer; Cardiotoxicity; Viral infections
- Present in a range of biofluids:
 - Blood, urine, cerebrospinal fluid…

Circulating microRNAs as disease state biomarkers:
 - oncology, cardiovascular, musculoskeletal, autoimmune…

Circulating microRNAs as novel tissue-injury biomarkers:
 - liver, pancreas, muscle, kidney, heart, brain…
Circulating microRNAs as translational biomarkers

TRANSLATIONAL BIOMARKERS:
- Safety, Efficacy & Disease States

Extracellular signalling functions?
(protein-bound, vesicles, exosomes & HDL-cargo)

Mechanistic Insight via Integrated molecular profiling + pathology (mRNA + microRNA + epigenomics)

Preclinical Tissues

Clinical Biopsies

Preclinical body fluids

Clinical body fluids
Paracetamol-induced Liver Injury

- Paracetamol (acetaminophen, APAP) is a widely used, over-the-counter analgesic and antipyretic drug
- Very safe at therapeutic doses (4g/day) but leads to potentially fatal, hepatocellular necrosis and acute liver failure in overdose
- The most common cause of drug-induced liver injury in UK ¹ & US ² (~ 500 deaths per annum)
- n-acetylcysteine treatment most effective <8 hrs of ingestion ³. In some cases (e.g. in late presentation), liver transplantation is the only therapeutic option
- New biomarkers of DILI are urgently sought. Ideal biomarkers would be sensitive, specific and predict clinical outcome ⁴

Blood-based microRNA biomarkers for DILI

Evidence from preclinical models

- miR-122 / miR-192 DILI biomarkers
 - Liver tissue specific
 - Translatable to human
 - Earlier detection than ALT; greater sensitivity; less variability.

US patent application, 2011, 111976 A1

Graphs

- **CCl₃Br/CCl₄/rat**
 - Sensitivity vs. 1-Specificity

- **APAP/mouse**
 - 1 Hour After Exposure
 - 3 Hour After Exposure
 - Fold change in miRNA concentration compared to control

Wang et al, PNAS, 2009
Blood-based microRNA biomarkers for DILI

Potential advantages

- **Diagnostic / prognostic liver injury biomarker potential ?**
 - Extract from recent US patent application (2011/111976 A1)

 If miR-122A detected in blood *above a threshold level*:

 - then the subject is classified as having suffered damage to the liver

 - then the subject is identified as being at risk of suffered tissue injury to the liver and exposure to the agent should be altered, i.e. Stopped or the exposure lowered

 - then the agent is identified as having a risk of causing injury to the liver

- **Improved specificity versus ALT ?**

Serum microRNAs as human DILI biomarkers

Specificity of miR-122 for liver injury

ALI: acute liver injury
CKD: chronic kidney disease
APAP: acetaminophen
non-APAP ALI:
- autoimmune
- HBV
- HCV
- Clarithromycin DILI

Starkey-Lewis et al., (2011)
Hepatology 54:1767
Serum microRNAs as human DILI biomarkers

miR-ALT correlations

Starkey-Lewis et al., (2011)
Hepatology 54:1767
Serum microRNAs as human DILI biomarkers

Functional marker-miR correlations

Starkey-Lewis et al., (2011)
Hepatology 54:1767
Serum microRNAs as human DILI biomarkers

Distinct biomarker dynamics for miR vs ALT

Circulating half-life ALT > miR-122

Turnover/half-life of miR-122 in human serum?

Starkey-Lewis et al., (2011)
Hepatology 54:1767
Serum microRNAs as human DILI biomarkers

miR-122 is suggestive but not predictive of patient outcome

Starkey-Lewis et al., (2011)
Hepatology 54:1767
Serum microRNAs as human DILI biomarkers

Extracellular miR states & importance of normalisation

- Serum miR-122 is mainly carried by argonaute 2 protein complexes

- Options for normalisation of serum microRNAs:
 - Total volume/amount of biofluid RNAs
 - Endogenous snRNAs (e.g. U6 snRNA; ubiquitously expressed in tissue)
 - Endogenous miRs
 - Exogenous miRs

- Is circulating U6 snRNA a reliable internal normaliser?
Serum microRNAs as human DILI biomarkers

Abundance & variation of candidate normalisers

hsa-let-7d-5p
(endogenous)

U6 snRNA
(endogenous)

hsa-miR-374a-3p
(endogenous)

cel-lin-4-5p
(exogenous)
Increased serum miR-122 during APAP-induced liver injury (alternate normalisers)

hsa-let-7d-5p (endogenous)

hsa-miR-374a-3p (endogenous)

U6 snRNA (endogenous)

cel-lin-4-5p (exogenous)
Increased serum miR-122 during APAP-induced liver injury (without normaliser)

hsa-miR-122 (no normaliser)
Investigating mechanisms & kinetics of liver microRNA release into biofluids

Schematic Model

- **Mechanism-based DILI biomarkers:**
 - discrimination between transient damage/repair vs. progressive liver injury?

- **Origin of serum miR-122:**
 - sporadic diffuse damaged liver cells? focal cellular damage? zonal progression?

- **Sequence of early tissue injury events leading to miR-122 release?**

- **Distinct mechanisms for release of liver miR122 vs. ALT/CK18/HMGB1 etc.?**

Apoptosis
- Cytokeratin 18 abundant in hepatocytes
- Is cleared by caspases
- Fragment released into plasma

Necrosis
- HMGB1 - released by necrotic cells
- But NOT by apoptotic cells

ACETYL HMGB1
- Provides inter-cellular signalling
- INNATE IMMUNE SYSTEM

Hepatocytes

- GSH depletion
- Adduct formation
- Ca²⁺ protein damage

Cytoplasm

- Macrophages
- Kupffer cells

Kinetics of liver microRNA release into biofluids

In situ localisation of miR122 (APAP/mouse)

1 h 2 h 4 h 8 h

Control

APAP

Progressive loss of miR-122 staining
Concomitant serum miR-122 increase
Kinetics of liver microRNA release into biofluids

In situ localisation of miR122 (APAP/mouse)

Control

1 h 2 h 4 h 8 h

Progressive loss of miR-122 staining
Concomitant serum miR-122 increase

APAP
Serum miR-122 as a human DILI biomarker

Current status & knowledge gaps

• miR-122 is at least as informative as ALT for DILI (e.g. APAP)

• miR-122 tissue-specificity provides advantages over ALT

• Combine miR-122 + ALT to more accurately detect liver injury?

• Urine as a potential source of microRNA hepatotoxicity biomarkers
 - Yang et al., 2012 Toxicological Sciences 125:335

• miR-122 not an ideal biomarker - does not distinguish benign ALT elevations (e.g. heparin) versus serious liver injury potential
 - Harrill et al., DILI meeting March 2011

Lack of baseline and dynamic range data in normal & disease states

Opportunities to investigate specificity and dynamics of miR-122 vs. clinical ALT signals: IMI SAFE-T; longitudinal/prospective studies
<table>
<thead>
<tr>
<th>Serum or Plasma Marker</th>
<th>Assays</th>
<th>Liver specificity</th>
<th>Human data</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin mRNA</td>
<td>RT-PCR</td>
<td>✓</td>
<td>yes</td>
<td>hepatocellular damage</td>
</tr>
<tr>
<td>Microglobulin precursor (Ambp) mRNA</td>
<td>RT-PCR</td>
<td>✓</td>
<td>yes</td>
<td>hepatocellular damage</td>
</tr>
<tr>
<td>Micro RNA 122</td>
<td>RT-PCR</td>
<td>✓</td>
<td>yes</td>
<td>hepatocellular damage</td>
</tr>
<tr>
<td>Conjugated/unconjugated bile acids</td>
<td>LC-MS</td>
<td>✓</td>
<td>not specific</td>
<td>only in tissues</td>
</tr>
<tr>
<td>High mobility group box 1 (HMGB1)</td>
<td>LC-MS</td>
<td>✓</td>
<td>not specific</td>
<td>yes</td>
</tr>
<tr>
<td>Cytokeratin 18 (KRT18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha fetoprotein (AFP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colony stimulating factor receptor (CSF1R)</td>
<td>Immuno-assays</td>
<td>✓</td>
<td>not specific</td>
<td>yes</td>
</tr>
<tr>
<td>F-protein (HPPD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathione S transferase alpha (GSTα)</td>
<td>LMX</td>
<td>✓</td>
<td>specific</td>
<td>yes</td>
</tr>
<tr>
<td>Leukocyte cell-derived chemotaxin 2 (LECT2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST6Gal 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Paranoxone (PON1) / Prothrombin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regucalcin (RGN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT1/2</td>
<td></td>
<td>✓</td>
<td>specific</td>
<td>only in tissues</td>
</tr>
<tr>
<td>Glutamate dehydrogenase (GLUD, GLDH)</td>
<td>Enzyme</td>
<td>✓</td>
<td>highly specific</td>
<td>yes</td>
</tr>
<tr>
<td>Malat dehydrogenase (MDH)</td>
<td>activity</td>
<td>✓</td>
<td>specific</td>
<td>yes</td>
</tr>
<tr>
<td>Purine nucleoside phosphorylase (PNP)</td>
<td></td>
<td>✓</td>
<td>specific</td>
<td>no</td>
</tr>
</tbody>
</table>

✓ SAFE-T has already developed an assay for singleplex measurement
* ELISA commercially available
Acknowledgements

Philip Starkey-Lewis
Chris Goldring
Kevin Park
Vivien Platt
Daniel Antoine
Neil French

Philippe Couttet
Olivier Grenet
Magali Marcellin
Michael Merz
Valerie Dubost
Diethilde Theil
Pierre Moulin

National Poisons Information Service, Edinburgh
James Dear

Scottish Liver Transplantation Unit, Edinburgh
Kenneth Simpson
Darren Craig

Clinical Pharmacology Unit, University of Edinburgh
Neeraj Dhaun

Liverpool Cancer Research UK
Eithne Costello
John Neoptolemos