Clarifying Classification of Liver Injury in Electronic Data Sources

Vincent Lo Re, MD, MSCE
Assistant Professor of Medicine and Epidemiology
Center for Clinical Epidemiology and Biostatistics
Center for Pharmacoepidemiology Research and Training
Perelman School of Medicine, University of Pennsylvania
Disclosures

• Research grant support (to Penn) from:
 – U.S. Food and Drug Administration
 – Agency for Healthcare Research & Quality
 – National Institute of Allergy & Infectious Diseases
 – Astra Zeneca
 – Bristol-Myers Squibb
 – Gilead Sciences

• Consulting: none
Traditional Approach to Identifying DILI: Spontaneous Reporting of Cases

Development of DILI:

- Start Drug
- Identify Liver Injury
- Evaluate Causes of Liver Injury
- Confirm DILI Case
- Report DILI Case

Limitations:

- Missed Liver Injury
- Incomplete Evaluation
- Missed DILI Case
- Case Not Reported

Lack of Ascertainment of DILI Cases + Selection Bias

Electronic Health Data: Resources to Identify Liver Injury

Electronic Health Data

Electronic Medical Records
- Hospitals
- Health systems (e.g., VA system)
- General practices: CPRD, THIN (UK)

Administrative Databases
- US Medicaid, Medicare
- HMO networks

CPRD = Clinical Practice Research Datalink; THIN = The Health Improvement Network
Use of Electronic Health Data to Overcome Limitations of Spontaneous Reporting

• Systematic identification of liver injury = complete ascertainment of cases
 – Identify diagnoses, laboratory results, procedures

• Lack of selection bias

• Capture large numbers of cases

• Real-time monitoring for liver injury
Opportunities from Studying Liver Injury in Electronic Health Data

• Availability of controls:
 – Similarly exposed patients without liver injury

• Risk factors, outcomes of liver injury

• Compare incidence of liver injury in users of drugs

• Associations between drugs and liver injury

• Identify liver injury early after onset
Challenges to Use of Electronic Health Data to Evaluate Liver Injury

• Must identify diagnosis codes that have sufficient yield to be efficient
 – Consider: lab abnormalities, procedures

• Need for supplementary records to confirm validity

• Ascertained signals with minimal noise

Few database studies evaluated liver injury as outcome
Aim: Determine ability of ICD-9 diagnoses to identify severe liver injury (w/o regard for etiology) within FDA’s Mini-Sentinel Distributed Database

- **Sub-Aim 1**: Evaluate in members without pre-existing liver / biliary disease
- **Sub-Aim 2**: Evaluate in members with chronic liver disease
Study Design / Data Source

• Design: Cross-sectional analysis

• Source: FDA’s Mini-Sentinel Distributed Database*
 – Common data model: demographics, diagnoses, procedures
 – 5 data partners:
 • HMO Research Network
 • HealthCore, Inc.
 • Humana, Inc.
 • Kaiser Permanente (Colorado, Northwest)
 • Vanderbilt/TennCare Bureau

Selection of Members: No Liver/Biliary Disease (Sub-Aim 1)

- **Inclusion criteria:**
 - 12 mo enrollment prior to diagnosis

- **Excluded:** Prior liver, biliary disease

- **Selected:**
 - 75 with toxic hepatitis diagnosis
 - 75 with ALF diagnosis

Toxic Hepatitis

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>573.3</td>
<td>Toxic hepatitis</td>
</tr>
<tr>
<td>573.8</td>
<td>Other liver disorder (drug)</td>
</tr>
</tbody>
</table>

Acute Liver Failure (ALF)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>570</td>
<td>Acute hepatic necrosis</td>
</tr>
<tr>
<td>572.2</td>
<td>Hepatic coma</td>
</tr>
<tr>
<td>572.4</td>
<td>Hepatorenal syndrome</td>
</tr>
<tr>
<td>572.8</td>
<td>Liver disease sequelae</td>
</tr>
<tr>
<td>V42.7</td>
<td>Liver transplant</td>
</tr>
</tbody>
</table>
Main Outcome: Severe Liver Injury

During hospitalization, observe either:

1) ALT or AST >3x ULN + total bilirubin >2x ULN
2) Total bilirubin >2x ULN + INR ≥1.5 (off anticoagulation)

ULNs via assay; Elevations need not be present on same day

Rationale:

- Def. 1: Liver injury interfering with bilirubin excretion
- Def. 2: May not be ↑ ALT/AST in advanced ALF

ULN = upper limit normal

Secondary Outcome: Acute Liver Failure (ALF)

• For members with ALF diagnoses, determined whether ALF occurred

• In absence of prior liver disease, observe both:
 1) INR \(\geq 1.5 \) (off anticoagulation therapy)
 2) Hepatic encephalopathy (altered mentation due to liver dysfunction)
 – Definition used by U.S. ALF Study Group*

Data Collection / Analysis

• Requested hospital records of selected members
• Redacted charts sent to Penn for abstraction
• Review by two hepatologists
 – Classified events: Definite; No; Unable to Determine
 – Disagreements: 3rd hepatologist broke ties
• Positive predictive value (PPV) of codes, combinations for definite severe liver injury, ALF
 – High PPV: identified outcomes are true diagnoses
Results: Confirmation of Events in Members with No Liver/Biliary Disease

149 Records requested

- 27 (18%) Did not provide records
- 17 (11%) Insufficient lab data to classify severe liver injury
- 105 (70%) Records sufficient to determine severe liver injury
- 57/75 (76%) Records sufficient to determine ALF
- 1/57 (2%) Confirmed ALF

122 (82%) Cases available for abstraction / adjudication

26 (17%) Confirmed liver injury
Adjudicator Agreement

Arbitrator #1

<table>
<thead>
<tr>
<th></th>
<th>No SLI</th>
<th>SLI</th>
<th>Unable</th>
</tr>
</thead>
<tbody>
<tr>
<td>No SLI</td>
<td>69</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>SLI</td>
<td>2</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Unable</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

% agreement = 102/122 = 83.6%
PPVs of Individual Diagnosis Codes for Confirmed Severe Liver Injury

<table>
<thead>
<tr>
<th>ICD-9-CM Code</th>
<th>No. with Code</th>
<th>No. with SLI</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any SALI code</td>
<td>105</td>
<td>26</td>
<td>25%</td>
</tr>
<tr>
<td>573.3</td>
<td>26</td>
<td>11</td>
<td>42%</td>
</tr>
<tr>
<td>Hepatic necrosis</td>
<td>31</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>570</td>
<td>35</td>
<td>19</td>
<td>54%</td>
</tr>
<tr>
<td>572.2</td>
<td>23</td>
<td>3</td>
<td>13%</td>
</tr>
<tr>
<td>Liver disease sequelae</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>572.8</td>
<td>13</td>
<td>7</td>
<td>54%</td>
</tr>
<tr>
<td>V42.7</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>ICD-9-CM Combinations</td>
<td>No. with Codes</td>
<td>No. with SLI</td>
<td>PPV</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Toxic hepatitis +</td>
<td>10</td>
<td>6</td>
<td>60%</td>
</tr>
<tr>
<td>Toxic hepatitis +</td>
<td>51</td>
<td>24</td>
<td>47%</td>
</tr>
<tr>
<td>Other specified liver disorder + Hepatic necrosis</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>Hepatic necrosis + Liver disease sequelae</td>
<td>2</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>Liver disease sequelae</td>
<td>3</td>
<td>2</td>
<td>67%</td>
</tr>
<tr>
<td>572.8 + liver biopsy code</td>
<td>7</td>
<td>7</td>
<td>100%</td>
</tr>
<tr>
<td>572.8 + liver biopsy code</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>
PPVs of Code(s) for Confirmed ALF

<table>
<thead>
<tr>
<th>ICD-9-CM Code or Combinations</th>
<th>No. with Code(s)</th>
<th>No. with ALF</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>570</td>
<td>33</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>572.2</td>
<td>22</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>572.4</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>572.8</td>
<td>11</td>
<td>1</td>
<td>9%</td>
</tr>
<tr>
<td>V42.7</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Any ALF code</td>
<td>57</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>Any ALF code + liver biopsy</td>
<td>5</td>
<td>1</td>
<td>20%</td>
</tr>
<tr>
<td>Any ALF code + E-code</td>
<td>3</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
Diseases Among 79 Members Adjudicated as No Severe Liver Injury

<table>
<thead>
<tr>
<th>ICD-9-CM Diagnosis</th>
<th>Condition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic necrosis (570)</td>
<td>DILI</td>
</tr>
<tr>
<td>Hepatic coma (572.2)</td>
<td>Alcoholic liver disease</td>
</tr>
<tr>
<td>Liver disease sequelae (572.8)</td>
<td>Alcoholic liver disease</td>
</tr>
<tr>
<td>Toxic hepatitis (573.3)</td>
<td>Cholelithiasis</td>
</tr>
<tr>
<td>Other liver disorder (drug) (573.8)</td>
<td>Hepatic cyst</td>
</tr>
</tbody>
</table>

* Not meeting severe liver injury criteria
Potential Study Limitations

- **Misclassification bias**
 - Standardized definitions for severe liver injury, ALF
 - Two adjudicators, third as tie-breaker

- **Small number of confirmed cases**

- **Negative predictive value not estimated**

- **Generalizability**
 - Commercially-insured; Tennessee Medicaid
Study Conclusions

• Individual ICD-9 codes had low PPV for liver injury, ALF
 – Lack of specificity of diagnosis codes
 – Complexity of diagnosis

• Select ICD-9 combinations had high PPV for liver injury:
 – Could evaluate comparative safety of drugs
 – Further validation prudent:
 • PPVs not determined using random samples
 • Sample sizes small
Electronic Data to Identify Liver Injury: Additional Methodologic Challenges

- Evaluate using lab data, labs + diagnoses
- Sensitivity of spontaneous reporting of DILI cases compared to case identification by electronic data
- Identification of appropriate controls
- Screen for liver injury in real time
- Predict adverse outcome at diagnosis of DILI
Acknowledgements

• **University of Pennsylvania**
 – Dena M. Carbonari, MS
 – Kimberly A. Forde, MD, MHS
 – David Goldberg, MD, MSCE
 – Kevin Haynes, PharmD, MSCE
 – Kimberly B. F. Leidl, MPH
 – K. Rajender Reddy, MD
 – Sean Hennessy, PharmD, PhD

• **HealthCore, Inc.**
 – Gregory W. Daniel, PhD, MPH, RPh

• **HealthPartners**
 – Pamala A. Pawloski, PharmD

• **Kaiser Permanente**
 – T. Craig Cheetham, PharmD, MS

• **FDA**
 – Azadeh Shoaibi, MS, MHS
 – Judith A. Racoosin, MD, MPH
 – Mark Avigan, MD, CM
 – Monika Houstoun, PharmD
 – Mary Willy, PhD
 – Gwen L. Zornberg, MD, ScD

• **Mini-Sentinel Operations**
 – Aarthi Iyer, MPH
 – Kara O. Coughlin, BA
 – Darren Toh, ScD
 – Madhavi Vajani, MPH

• **Data Partners**