Mark Avigan, MD, CM
Associate Director for Critical Path Initiatives
Office of Pharmacovigilance and Epidemiology
Office of Surveillance and Epidemiology
Center for Drug Evaluation and Research, FDA

Click to view Biosketch and Presentation Abstract
or page down to review presentation
Drug-induced immune injuries

Why these are important

March 19, 2015

Mark Avigan, MD CM

Associate Director of Critical Path Initiatives

Office of Pharmacovigilance & Epidemiology/OSE

CDER, FDA
The views being presented are my own and not an official position of the FDA
Overview of Presentation

• Drug-induced Immune Injury: Challenges in Definitions & Regulatory Implications
 • product labeling & risk management
• Drug-induced Autoimmunity & Autoimmune Hepatitis: Accounting for diverse phenotypes & mechanisms
 • susceptibility factors & markers
 • new cancer drugs with risk of DIAI & AIH
 • future directions in assessing drug causality

19 Mar 2015 Annual Meeting on DILI
FDA/C-Path/PhRMA/AASLD
Immune Injury Caused by Therapeutic Drugs

Targets: drug-associated antigens or self

- Onset within 1-8 wks of treatment; can be as short as 1-2 days
- Multiple organs can be affected
 - Multiple types of hypersensitivity
 - Fever, rash, eosinophilia common in some forms
 - Re-challenge has significant risk
- Onset after prolonged treatment
- Sub-acute or chronic organ injury
- Characteristic range of affected organs can depend on the specific drug
 - Characteristic autoantibody profiles for certain drugs, but many overlap

Reaction Pathways

Immuno-allergic

Auto-immune
Drugs & Hypersensitivity Reactions*

FDA Postmarketing Safety Alerts: 1996-2014

<table>
<thead>
<tr>
<th>Drug</th>
<th>Etiology</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlormezanone</td>
<td>SJS/TEN</td>
<td>Withdrawal</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>SCAR</td>
<td>Boxed Warning</td>
</tr>
<tr>
<td></td>
<td>Aseptic Meningitis</td>
<td>Warning</td>
</tr>
<tr>
<td>Valdecoxib</td>
<td>SCAR</td>
<td>Withdrawal</td>
</tr>
<tr>
<td>Abarelix</td>
<td>Immed Hypersens</td>
<td>Withdrawal</td>
</tr>
<tr>
<td>Abacavir</td>
<td>Multiorg Hypersens</td>
<td>Boxed Warning</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>SJS/TEN</td>
<td>Boxed Warning</td>
</tr>
<tr>
<td>Omalizumab</td>
<td>Anaphylaxis</td>
<td>Boxed Warning</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>SJS/TEN/DRESS</td>
<td>Modified Warning</td>
</tr>
<tr>
<td>Ansenapine</td>
<td>Anaphylaxis</td>
<td>Warning</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>Eosin Pneumonia</td>
<td>Warning</td>
</tr>
<tr>
<td>Telaprevir</td>
<td>SJS/TEN/DRESS</td>
<td>Boxed Warning</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>SJS/TEN/AGEP</td>
<td>Warning</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>SCAR/DRESS</td>
<td>Warning</td>
</tr>
<tr>
<td>Benzoyl Peroxide, or</td>
<td>Immediate Hypersensitivity</td>
<td>OTC Communications</td>
</tr>
<tr>
<td>Salicylate (Topicals)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Partial list

19 Mar 2015

Annual Meeting on DILI

FDA/C-Path/PhRMA/AASLD
Drug-induced Autoimmune Reactions

FDA Approved Product Labels

<table>
<thead>
<tr>
<th>Drug</th>
<th>Conditions</th>
<th>Warnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minocycline</td>
<td>AI Syndromes, AIH</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>Hepatotoxicity, CAH</td>
<td>Warning</td>
</tr>
<tr>
<td>Procainamide</td>
<td>Lupus-like syndrome</td>
<td>Boxed Warning</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>Lupus-like syndrome</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>Hypersensitive reactions</td>
<td></td>
</tr>
<tr>
<td>Interferon β-1a</td>
<td>AI Disorders, DILI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Infliximab</td>
<td>Hepatotoxicity, AIH</td>
<td>Warnings</td>
</tr>
<tr>
<td></td>
<td>Lupus –like syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Metreleptin</td>
<td>AI Disorders, AIH</td>
<td>Warnings</td>
</tr>
<tr>
<td></td>
<td>Hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>Immune Mediated AR</td>
<td>Warnings</td>
</tr>
<tr>
<td></td>
<td>Hepatitis</td>
<td></td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>Immune Mediated AR</td>
<td>Warnings</td>
</tr>
<tr>
<td></td>
<td>Hepatitis</td>
<td></td>
</tr>
</tbody>
</table>

*Partial list

19 Mar 2015 Annual Meeting on DILI FDA/C-Path/PhRMA/AASLD
Drug-induced Immune Injury

Regulatory Science Objectives

• Universal categorical criteria of reaction types needed
 – Should have practical utility for HCPs & patients

• Reliable risk assessment of drug in each individual required for optimal treatment

• Effective procedures to monitor patients and manage immune reactions

• Post-market surveillance strategies to tally & evaluate events

• Consistent AE descriptions & instructions to manage risk in product labels & other tools of communication
Immune Injury - Challenge 1
Multiple drug reactions associated with specific agents

- Some agents (e.g. minocycline) can induce immuno-allergic or autoimmune injuries (AI) in different individuals
- Variable temporal features, severity & affected organs are observed in different patients, even with same injury type
 - e.g. minocycline AI includes drug-induced lupus, AIH &/or autoimmune thyroiditis; lamotrigine hypersensitivity can affect different organs (skin, liver, meninges)
- Inter-individual differences are hard to predict. Hypothesized co-determinants include:
 - HLA polymorphisms ± other genomic effects
 - Pre-existing Ag-specific auto-reactive T cell clones
 - Danger signals associated with different organs
Drug-Induced Autoimmune Injury
‘Classical’ Categories

• Drug-induced lupus erythematosus (DILE)
 – arthralgia, serositis, lymphadenopathy, subacute & chronic cutaneous SLE

• Rash

• Autoimmune Hepatitis (AIH)

• Colitis

• Endocrinopathies
 – thyroiditis, adrenal insufficiency, hypopituitarism
Drug-induced Autoimmune Injury

Hapten Hypothesis

Initiators

Haptens

Drug Metabolites

Second Stress Signals:
Inflammatory, Cellular, or Environmental

Drivers

Changes in Lymphocyte Genetic /Epigenetic Controls

Enhancement of Auto-reactive Cytotoxic T/NK/B Cell Activities

Alteration of Immune Regulatory T Cells

Breaking of Self-tolerance

Unmasking of Underlying Immune Disease
<table>
<thead>
<tr>
<th>RISK LEVEL</th>
<th>DRUGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH (>1%)</td>
<td>Procainamide (20%), Hydralazine (5-10%)</td>
</tr>
<tr>
<td>MEDIUM (<1%)</td>
<td>Quinidine</td>
</tr>
<tr>
<td>LOW (<<1%)</td>
<td>Methyldopa, Acebutol, Captopril, Minocycline, INH, Chlorpromazine, Carbamazepine, Propylthiouracil, D-Penicillamine, Sulfasalazine</td>
</tr>
<tr>
<td>VERY LOW</td>
<td>Nitrofurantoin, Sulfasalazine, Clonidine, Minoxidil, Pindolol, Prazosin, Chlorprothixene, Phenelzine, Lithium Carbonate, Enalapril, Labetalol, Phenytoin, Ethosuximide, Primidone, Trimethadione, Phenylbutazone, Chlorthalidone, Hydrochlorothiazide, Atorvastatin, Fluvastatin, Lovastatin, Simvastatin, Pravastatin, Infliximab, Etanarcept, Adalimumab, IFN-α, IFN-1β, IL-2</td>
</tr>
</tbody>
</table>

* Representative (Incomplete) List; X. Xiao & C. Chang, J Autoimm. 2014; RL Rubin, Toxicol. 2005
Drugs/biologics & risk for drug-induced AIH*

<table>
<thead>
<tr>
<th>CAUSAL LINK</th>
<th>DRUGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+++</td>
<td>Tienilic Acid, Oxyphenisatin, Methyldopa, Dihydralazine, Minocycline, Nitrofurantoin, Clometacine, Propylthiouracil, Diclofenac, INH, Infliximab, IFN-α, IFN-β</td>
</tr>
<tr>
<td>++</td>
<td>Fenofibrate Statins, Etanercept, Adalimumab, Indomethacin, Meloxicam, Terbenafine, Imatinib, Atomoxetine, Pemoline, Phenprocoumon, Doxycyline, Germander, Morinda Citrifolia</td>
</tr>
</tbody>
</table>

* Representative (Incomplete) List; X. Xiao & C. Chang, J Autoimm. 2014; RL Rubin, Toxicol. 2005
Autoimmune Injury – Challenge 2

Genetic susceptibility markers are limited

DILE

- HLA DR-4 (*Hydralazine*)
- Slow Acetylator Status (*Hydralazine*)
- Complement C-4 Null status (*Procainamide*)
- Female Gender (*Hydralazine, Procainamide*)
- HLA-DR0301 (*Sulfasalazine*)
- HLA-DQB1: Y30 (*Minocycline*)
- HLA-DR-2 or HLA-DR-4 (*Minocycline*)

AIH

- A3, B8, DRB03*301, DQB1*0201, DR3 (Idiopathic AIH). Whether same risk markers for DIAIH, undefined.
Drug-induced Autoimmune Injury

Genetic susceptibility markers

- **Individual loci:** Effects on overall risk are small

- **Multiple loci:** Combinatorial effects on overall risk are undefined
Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio)

19 Mar 2015
Annual Meeting on DILI
FDA/C-Path/PhRMA/AASLD
When to pharmacogenetically screen? *It's all relative!*

Against

- Rare allele in key demographic group
 - Test has low positive predictive value
 - Result weakly impacts treatment benefits vs risks
- Other & inexpensive alternative treatments
- Low risk for severe HSR

For

- Common allele in key demographic group
 - Test has high positive predictive value
 - Result strongly impacts treatment benefits vs risks
- Few & expensive alternative treatments
- High risk for severe HSR
Autoantibodies - Challenge 3
Limitations as markers of drug-induced injury

• Why there are different antigenic cellular components & Ig isotypes among different autoimmune drug reactions is not understood

• High vs low titers of drug-induced autoantibodies does not predict clinical significance or severity of injury
Drug-Induced Autoantibodies & Injury

<table>
<thead>
<tr>
<th>Drug</th>
<th>DILE Association</th>
<th>DILE Ag/Auto-Ab</th>
<th>AIH Association</th>
<th>AIH Ag/Auto-Ab</th>
<th>Other Rxn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procainamide</td>
<td>++++</td>
<td>histone, histone-DNA, cardiolipin</td>
<td>-</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Hydralazine</td>
<td>++++</td>
<td>histone, ANCA histone-DNA</td>
<td>+</td>
<td>N/A</td>
<td>Vasculitis</td>
</tr>
<tr>
<td>Minocycline</td>
<td>++</td>
<td>ANA, pANCA, cardiolipin, ds-DNA, Ro/SSA</td>
<td>+++</td>
<td>ANA, pANCA</td>
<td>Thyroiditis</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>±</td>
<td>N/A</td>
<td>+++</td>
<td>ANA. SMA</td>
<td></td>
</tr>
<tr>
<td>Methyldopa</td>
<td>++</td>
<td>ANA, histone</td>
<td>+++</td>
<td>ANA, SMA</td>
<td>Hemolytic Anemia</td>
</tr>
<tr>
<td>Infliximab</td>
<td>+</td>
<td>ds-DNA (IgM, IgG), cardiolipin</td>
<td>++</td>
<td>ANA, SMA ds-DNA</td>
<td>Vasculitis ILD Nephritis</td>
</tr>
</tbody>
</table>

19 Mar 2015 Annual Meeting on DILI FDA/C-Path/PhRMA/AASLD
<table>
<thead>
<tr>
<th>Drug</th>
<th>DILE Association</th>
<th>DILE Ag/Auto-Ab</th>
<th>AIH Association</th>
<th>AIH Ag/Auto-Ab</th>
<th>Other Rxn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxyphenisatin</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>ANA, SMA</td>
<td></td>
</tr>
<tr>
<td>Tienelic Acid</td>
<td>-</td>
<td>N/A</td>
<td>+++</td>
<td>CYP2C9 (LKM-2)</td>
<td></td>
</tr>
<tr>
<td>Dihydralazine</td>
<td>+</td>
<td>ANA, MPO cardiolipin</td>
<td>+++</td>
<td>CYP1A2 (LM)</td>
<td></td>
</tr>
<tr>
<td>Clometacine</td>
<td>-</td>
<td>N/A</td>
<td>++</td>
<td>ANA, SMA, DNA</td>
<td></td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>±</td>
<td>N/A</td>
<td>+++</td>
<td></td>
<td>Colitis SCAR Other</td>
</tr>
</tbody>
</table>
Autoantibodies

Other Findings

• AutoAbs often detected in drug exposed patients w/o liver injury, e.g.
 • **Procainamide**: 80% develop ANA (dose-related)
 • **Infliximab**: 15% with RA develop α-ds-DNA Ab (IgM); 55% with IBD develop ANA, most after 1 or 2 infusions

• Some drug-specific autoimmune rxns associated with characteristic autoAb signatures, e.g.
 • **Halothane**: α-LKM-1 (CYP-2D6); **Tienelic Acid**: α-LKM-2 (CYP-2C9),
 Dihydralazine: α-LM (CYP1A2); **Iproniazid**: α-M6, **Minocycline & Propylthiouracil**: pANCA (MPO)

• Checkpoint inhibitor-induced autoimmune rxns not consistently tied to characteristic auto- Abs. Predictive tests of autoreactive T cells that target normal organs so far not established.
Autoimmune Injury – Challenge 4

Predicting drug effects not mediated by autoantibodies

• Enhanced autoreactive T cells (Procainamide; Hydralazine)
 • Mechanism: DNA methyltransferase - results in [LFA-1, CD-70 & perforin] that TH-2 cell actions

• Reduced apoptosis (TNF inhibitors; Minocycline)
 • Mechanism: Accumulation of cellular debris due to decreased removal of organ cells – results in autoimmunity

• TH-2 cytokines [incl. Il-4, Il-5, Il-6, Il-10, Il-13] (TNF inhibitors)

• Increased infections (TNF inhibitors)

• Disruption of Central Tolerance (Procainamide hydroxylamine)
 • Mechanism: Metabolite blocks positive thymic selection of maturing T cells

19 Mar 2015 Annual Meeting on DILI
FDA/C-Path/PhRMA/AASLD
Inducing Autoimmunity – Challenge 5

Use of checkpoint inhibitors for oncotherapy

- Inhibitors of CTLA-4, PD-1 and PD-1 ligands: Linked to high risk for autoimmune organ injuries mediated by ‘souped-up’ auto-reactive T & NK? cells
- Characteristic auto-Abs not identified to date
- Autoimmune injuries: colitis > SCAR, hepatitis/ALF, endocrine organs, nephritis & other organs with comparatively short latencies after treatment initiation
- Risk levels for life-threatening AEs sufficiently high for valuable assessment in clinical efficacy trials
- Predictors surrounding susceptibility factors in different organs for optimal patient treatment planning & risk management will require more study
Checkpoint Inhibitors

Post-market: Life-threatening autoimmune AEs

- In first 3 yrs of ipilimumab marketing – Serious AE reports submitted to FAERS (crude nos):
 - Colitis ~ 380 reports
 - Some reports of intestinal perforation
 - Autoimmune hepatitis &/or Hepatic Failure ~ 50 reports
 - Liver metastases (melanoma) often present
 - Onset after a small no of q3wk infusions
 - Some reports of fatal outcomes with rapidly deteriorating liver function
Checkpoint Inhibitors

Post-market AIH Cases of Interest: Example

60 yr old Male

- Melanoma metastases, brain & liver (2 lesions < 3cm, abd CT scan)
- Given 2 doses of *ipilimumab* (3mg/kg), 3 wks apart
- 3 wks after 2nd dose: Pt admitted with new onset weakness, diarrhea, tea colored urine & hepatic encephalopathy
- Began po 80 mg Prednisone & Lactulose
- 2 d later: IV methylprednisolone 100 mg bid, N-AC & Rifaxamin; Serum liver tests worsened
- Pt died in liver failure 5 days after admission
Personalizing Use of Checkpoint Inhibitors

Aiming for an Autoimmune ‘Goldilocks Zone’
Drug-Induced AIH

Future Assessment of Causality

- The broad range of clinical presentations & Rxn time-lines challenges the utility of a single algorithmic assessment of causality in suspected drug-induced auto-immunity or AIH.

- Current RUCAM criteria of causality are not in alignment with a late onset, chronic AIH phenotype. Time/exposure effects, steroid responsiveness, histopathology & serology bear attention.

- Matching specific auto-Abs with certain drug – induced injuries as an algorithmic criteria for causality may have utility, but requires case & control testing with validation studies.

- In the future a set of RUCAM-like scales might be established that would be appropriate to align with particular drug-related AIH scenarios. Currently, expert opinion is a crucial tool in case assessment.
FDA DILI website: www.fda.gov/Drugs/ScienceResearch/ResearchAreas