Thomas J. Urban, PharmD, PhD
Assistant Professor
University of North Carolina at Chapel Hill

Click to view Biosketch and Presentation Abstract
or page down to review presentation
Update on Genetic Susceptibility to DILI in Humans

March 19th, 2015

Thomas J. Urban, PharmD, PhD
Assistant Professor
Division of Pharmacotherapy and Experimental Therapeutics
Center for Pharmacogenomics and Individualized Therapy
UNC-Hamner Institute for Drug Safety Sciences
University of North Carolina at Chapel Hill
DILIN
Drug-Induced Liver Injury Network

iDLIC

NIDDK
NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES

International SAE Consortium

https://dilin.dcri.duke.edu/

https://www.saeconsortium.org/
GWAS of Drug-Induced Liver Injury

HLA-B*57:01, a genetic risk factor for drug-induced liver injury

A genome-wide association study with lumiracoxib

Susceptibility to Amoxicillin-Clavulanate-Induced Liver Injury Is Influenced by Multiple HLA Class I and II Alleles

GASTROENTEROLOGY 2011;141:338–347
<table>
<thead>
<tr>
<th>Compound</th>
<th>No of cases</th>
<th>HLA allele</th>
<th>Odds ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flucloxacillin</td>
<td>51</td>
<td>B*57:01</td>
<td>80.6(22.8-284.9)</td>
<td>9x10^{-19}</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>201</td>
<td>A*02:01</td>
<td>2.3(1.8-2.9)</td>
<td>1.8x10^{-10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRB115:01-DQ B106:02</td>
<td>2.8(2.1-3.8)</td>
<td>3.5x10^{-11}</td>
</tr>
<tr>
<td>Lumiracoxib</td>
<td>41</td>
<td>DRB115:01-DQ B106:02</td>
<td>5.0(3.6-7.0)</td>
<td>6.8x10^{-25}</td>
</tr>
<tr>
<td>Lopatinib</td>
<td>35</td>
<td>DRB107:01-DQA102:01</td>
<td>2.9(1.3-6.6)</td>
<td>0.007</td>
</tr>
<tr>
<td>Ximelagatran</td>
<td>74</td>
<td>DRB107:01-DQA102:01</td>
<td>4.4(2.2-8.9)</td>
<td>6x10^{-6}</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>22</td>
<td>A*33:03</td>
<td>13.0 (4.4-38.6)</td>
<td>1.2 x 10^{-5}</td>
</tr>
</tbody>
</table>
“Phase 2” DILI Meta-GWAS

Total of 1,505 DILI Cases of Primarily European Ancestry
Omnibus (“all-cause”) DILI GWAS
(excluding flucloxacillin and amoxicillin/clavulanate)
899 cases and 10,605 controls
HLA-A*33:01 is the top associated HLA allele (OR~2.6 , pv=2*10^-8)
Drug-specific analysis: TERBINAFINE
14 Caucasian cases
HLA A-33:01 risk factor (OR ~40, p-value 10^{-10})

<table>
<thead>
<tr>
<th>SNP</th>
<th>ODDS</th>
<th>UCI</th>
<th>LCI</th>
<th>Pvalue</th>
<th>Pvalue.Fis</th>
<th>FreqCases</th>
<th>FreqCont.</th>
<th>missing</th>
<th>hwe2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B*14:02</td>
<td>13.99</td>
<td>36.2</td>
<td>5.405</td>
<td>5.40E-08</td>
<td>1.82E-05</td>
<td>0.25</td>
<td>0.03079</td>
<td>1</td>
<td>0.7582</td>
</tr>
<tr>
<td>HLA-A*33:01</td>
<td>40.53</td>
<td>131.4</td>
<td>12.51</td>
<td>6.78E-10</td>
<td>4.71E-07</td>
<td>0.2143</td>
<td>0.01058</td>
<td>1</td>
<td>0.1939</td>
</tr>
<tr>
<td>HLA-C*08:02</td>
<td>10.77</td>
<td>27.6</td>
<td>4.19</td>
<td>8.02E-07</td>
<td>0.000133</td>
<td>0.25</td>
<td>0.04226</td>
<td>1</td>
<td>0.5674</td>
</tr>
</tbody>
</table>
After eliminating terbinafine cases, HLA-A 33:01 remains weakly associated with “all-cause” DILI.
Other HLA results:
Rare HLA types* associated with specific drugs

<table>
<thead>
<tr>
<th>ETH</th>
<th>DRUG</th>
<th>HLA allele</th>
<th>MAT cases</th>
<th>MAT controls</th>
<th>NETdb</th>
<th>OR</th>
<th>PV</th>
<th># carriers</th>
<th># cases</th>
<th># DILIC</th>
<th># DILIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>nEU</td>
<td>TEUTHROMYCIN</td>
<td>HLA-A*02:02</td>
<td>0.06</td>
<td>0.0006</td>
<td>0.0009</td>
<td>101.8</td>
<td>6.77E-05</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>MINOCYCLINE</td>
<td>HLA-B*35:02</td>
<td>0.06</td>
<td>0.0030</td>
<td>0.01</td>
<td>29</td>
<td>2.57E-08</td>
<td>4</td>
<td>25</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>SEVOFLURANF</td>
<td>HLA-DRB1*08:03</td>
<td>0.10</td>
<td>0.0023</td>
<td>0.0024</td>
<td>145.4</td>
<td>9.84E-05</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>VALPROICACID</td>
<td>HLA-DRB1*10:01</td>
<td>0.08</td>
<td>0.0067</td>
<td>0.0085</td>
<td>18.25</td>
<td>3.34E-05</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>FRUTHROMYCIN</td>
<td>HLA-A*69:01</td>
<td>0.10</td>
<td>0.0040</td>
<td>0.0015</td>
<td>430</td>
<td>3.14E-05</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>LAMOTRIGINE</td>
<td>HLA-C*16:04</td>
<td>0.10</td>
<td>0.0004</td>
<td>0.0006</td>
<td>280.1</td>
<td>3.05E-05</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

*Accuracy of imputation is less reliable for rare HLA types!!!
HLA genes: role in immunity and drug hypersensitivity

- **HLA class I genes expressed on most cells**
 - A, B and C genes

- **HLA class II genes expressed on antigen presenting cells**
 - DR, DQ, DP genes

- **HLA proteins normally present peptide antigens to T cells**
 - May inappropriately present drug-peptide complexes or “neoantigens”
Mechanistic Basis of HLA-Mediated Drug Toxicities

PDB code 3UPR

David Ostrov, University of Florida
SULFAMETHOXAZOLE W/TRIMETHOPRIM:
27 Caucasian cases
Genome-wide significant signal on Chr9p (intergenic)
Ongoing Next-Gen Sequencing Studies

- Drug-Induced Liver Injury due to:
 - Isoniazid
 - Minocycline
 - Nitrofurantoin
 - Valproic Acid
 - Body-building supplements containing androgens
 - Sulfamethoxazole/trimethoprim (TBD)
- Cholestatic liver injury (targeting the “biliome”)

Cholestatic liver injury (targeting the “biliome”)

Drug-Induced Liver Injury due to:
- Isoniazid
- Minocycline
- Nitrofurantoin
- Valproic Acid
- Body-building supplements containing androgens
- Sulfamethoxazole/trimethoprim (TBD)
“Gene-to-Function”

“Function-to-Gene”

Cultured undifferentiated stem cells

Pluripotent

DNA
Acknowledgements

University of North Carolina
- Paul Watkins
- Kim Brouwer
- Tim Wiltshire
- Nanye Long

DILIN
- Naga Chalasani
- Bob Fontana
- Andrew Stolz
- Jose Serrano
- Jay Hoofnagle

iDILIC
- Guru Aithal
- Ann Daly
- Mirabel Lucena
- Raul Andrade
- Miriam Molokhia

iSAEC
- Arthur Holden
- Matt Nelson
- Paola Nicoletti
- Yufeng Shen

Broad Institute
- Mark Daly
- Jackie Goldstein

University of Florida
- David Ostrov

Hamner Institute
- Merrie Mosedale

Duke University
- Huiman Barnhart
- David Goldstein

NIDDK

International SAE Consortium

UNC Center for Pharmacogenomics and Individualized Therapy