Daniel J Antoine, Ph.D
Research Fellow
MRC Center for Drug Safety Science
University of Liverpool

Click to view Biosketch and Presentation Abstract
or page down to review presentation
HMGB1 Variants Determine if DILI is Benign or Dangerous

Dan Antoine, PhD
d.antoine@liv.ac.uk
Development of new DILI biomarkers

Unmet need:

- Biomarkers with improved hepatic specificity
- Enhanced mechanistic basis (translational)
- Earlier detection of DILI
- Patient response
 - Outcome / prognosis
 - Benign vs serious ALT elevations

Figure courtesy of Ina Schuppe-Koistinen
Biomarkers for mechanisms – HMGB1

High Mobility Group Box-1 (HMGB1)

- 25 kDa chromatin binding protein, 3 domains (A, B, C-tail)
- Regulates transcription (DNA binding)
- DAMP – ligand for TLR4, RAGE, CXCR4
- Necrosis – passive release
- Active immune cell secretion (requires NLS acetylation)
- Redox regulation

Figure courtesy of Ulf Andersson, Karolinska
Biomarkers for mechanisms – HMGB1

- Tracking HMGB1 from hepatocyte to blood

H&E

anti-HMGB1

Normal

APAP (10h)

HMG1 [ng/ml]

- Un
- 6h
- 12h
- 24h

- **p=0.059**

PT

CV

Bar Graph

- **APAP**
Biomarkers for mechanisms – HMGB1

Hyper-acetylated HMGB1

Hypo-acetylated HMGB1

D.J. Antoine et al. 2009 Toxicol Sci
Translational mechanisms

Of mice.......................

and men

DJ Antoine et al 2012 J Hepatol
Inflammation in clinical APAP toxicity (deleterious in vivo)? Can Acetyl-HMGB1 predict outcome?

Outcome biomarkers based on mechanism

- Acetylated HMGB1
- ALT

Died / Liver transplant
Survivors

Acetylated HMGB1 (ng/ml)

Healthy volunteers, APAP -No ALI, APAP -ALI

Sensitivity

1 - Specificity

QTRAP 5500

K182-185 (Acetyl)
K177+180 (Acetyl)
K173 (Acetyl)

Cytokine domain

Nuclear Localization sequence

DJ Antoine et al 2012 J Hepatol
Biomarkers = Therapeutics?

HMGB1 – functional role in DILI

Percentage survival

Time (h)

APAP

APAP + anti-HMGB1

ALT activity (U/l)

IgY

Anti-HMGB1

APAP

APAP + Anti-HMGB1

IgY

Necrosis and inflammation

DJ Antoine et al 2010 Mol Med
HMGB1 – mechanistic role in DILI

- Novel mouse model development – Conditional \(\text{Hmg}b1^{\Delta \text{HEP}} \)

\[
\begin{align*}
\text{hmg}b1 & \quad 5' \quad \text{loxP} \quad 2 \quad 3 \quad 4 \quad \text{loxP} \quad 3' \\
\text{hmg}b1^{\text{fl/fl}} \quad \times \quad \text{ALB-Cre} \quad \Downarrow \\
\text{hmg}b1^{\text{WT}} \quad \text{hmg}b1^{\Delta \text{HEP}}
\end{align*}
\]

- Novel hepatocyte specific KO, whole body embryonic lethal

X Ge & DJ Antoine et al 2014 J Biol Chem

P Huebner et al 2015 J Clin Invest
Conditional *Hmgb1*\(^{ΔHep}\) are protected from APAP hepatotoxicity.
HMGB1 – mechanistic role in DILI

- Conditional *Hmgb1\DeltaHep*
 protected from APAP hepatotoxicity
- Reduced neutrophil, but not macrophage, infiltration into liver

P Huebner et al 2015 J Clin Invest
HMGB1 – mechanistic role in DILI

- Adenoviral HMGB1 gene delivery restores hepatic inflammation and injury after APAP treatment

P Huebner et al 2015 J Clin Invest
HMGB1 in liver injury and disease

Non-APAP

ALD (AASLD SIG Jan 2015)

High Mobility Group Box-1 (HMGB1) Participates in the Pathogenesis of Alcoholic Liver Disease (ALD)

Biomarkers Distinguish Apoptotic and Necrotic Cell Death During Hepatic Ischemia/Reperfusion Injury in Mice

I/R Injury

Cholestasis
Prediction of serious DILI

- Transient elevations in ALT often seen during clinical trials
- Hy’s Law
 - Most widely used predictor of serious DILI
 - Only regulatory endorsed model
 - Drug-induced hepatocellular jaundice
 - Some mortality (10 – 50%)
 - Temporal observation and differential medical diagnosis
 - ALT 3x ULN and TBL 2x ULN
Chronic therapeutic APAP administration – DILI, but not serious?

- PB Watkins et al., 2006. JAMA
- 30-40% volunteers develop transient ALT increase
- Significant apoptotic component

Aminotransferase Elevations in Healthy Adults Receiving 4 Grams of Acetaminophen Daily
A Randomized Controlled Trial

Context: During a clinical trial of a novel hydrocodone/acetaminophen combination, a high incidence of serum alanine aminotransferase (ALT) elevations was observed.

Objective: To characterize the incidence and magnitude of ALT elevations in healthy participants receiving 4 g of acetaminophen daily, either alone or in combination with selected opioids, as compared with participants treated with placebo.

- P Thulin et al 2013 Liver Int
Chronic therapeutic APAP administration – DILI, but not serious?

- PB Watkins et al., 2006. JAMA
- 30-40% volunteers develop transient ALT increase
- Elevated circulating DAMPs (HMGB1)
- *Why do they not develop serious DILI?*
Cysteine redox chemistry

Disulphide bond

- Sulphenic (usually labile)
- Sulphinic (only reduced enzymatically)
- Sulphonic (irreversible)
HMGB1 Redox Regulates Function and Mode of Action

Schematic Molecular Overview

<table>
<thead>
<tr>
<th>Molecule / Cysteine Redox Level</th>
<th>Schematic Molecular Overview</th>
<th>Cytokine-Inducing Activity</th>
<th>Chemoattractant Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-thiol HMGB1</td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CySH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disulfide-containing HMGB1</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CyS-SyC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGB1 terminally oxidized by ROS</td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

References

- DJ Antoine et al 2014 Mol Med
- B Lu et al 2012 Nature
- B Lu et al 2014 PNAS
- S Nystrom et al 2013 EMBO J
- H Yang et al 2012 Mol Med
Cell death dependent HMGB1 isoform release and outcome in vivo

FED – APAP (apoptosis/necrosis)

FAST – APAP (necrosis)

FED APAP+Z-VAD.fmk (necrosis)

H&E

5hr

Active caspase-3

24hr

Regeneration vs Necrosis & Inflammation

SO$_3$H \[\begin{array}{c|c|c}
\text{C} _23 & \text{C} _45 & \text{C} _106
\end{array} \]

SO$_3$H \[\begin{array}{c|c|c}
\text{C} _23 & \text{C} _45 & \text{C} _106
\end{array} \]

SO$_3$H \[\begin{array}{c|c|c}
\text{C} _23 & \text{C} _45 & \text{C} _106
\end{array} \]
HMGB1 redox: Mechanistic biomarker of serious DILI

Serious liver injury
(Overdose)

- Apoptosis (5-15%), Necrosis & Inflammation

Transient liver injury
(chronic therapeutic)

- Apoptosis (40-70%) & Necrosis

Whole Protein ESI-LC-MS
Outcome and **insult** dependent HMGB1 redox profiles

<table>
<thead>
<tr>
<th>HMGB1 isoform (%)</th>
<th>Sulfonyl</th>
<th>Disulfide</th>
<th>Fully Reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>APAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapeutic</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OD (Survive)</td>
<td>58</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>OD (Died/LT)</td>
<td>8</td>
<td>32</td>
<td>60</td>
</tr>
</tbody>
</table>

Functionally distinct HMGB1 isoforms determine if APAP liver injury is serious or benign.
HMGB1 redox – Apoptotic index

- Tool to determine if DILI is serious or benign based on mechanism

Graph showing the relationship between HMGB1 redox ratio (SO_xH / SH) and apoptotic ratio (peak M30 / peak M65). The graph includes data points for APAP Therapeutic (N=15), APAP OD Survive (N=47), and APAP OD Died/LT (N=31).
Development of new DILI biomarkers

Summary:

- HMGB1
 - Mechanistic biomarker in experimental and clinical liver injury (APAP, ALD, IR, Cholestasis)
 - Functional role in mechanism of pathology (Novel KO mice)
- Patient response
 - Outcome / prognosis (acetyl-HMGB1)
 - Benign vs serious ALT elevations (HMGB1 redox)

Figure courtesy of Ina Schuppe-Koistinen
Acknowledgments

CDSS Liverpool
BK Park
M Pirmohamed
A Kipar
R Jenkins
J Clarke

Edinburgh
J Dear
K Simpson

Hamner, USA
P Watkins
M Mosedale
B Howell

KUMC, USA
H Jaeschke
M McGill
CD Williams

Columbia U, USA
R Schwabe
P Huebener

U Illinois at Chicago, USA
N Nieto
X Ge