Brett A. Howell, Ph.D.
Co-Project Lead, DILI-sim modeling team
Lead Scientist and Manager, DILI-sim

Click to view Biosketch and Presentation Abstract
or page down to review presentation
Serum Cytokeratin-18 as a Biomarker for Liver Injury?

19 March 2015

Brett A. Howell, Ph.D.
Associate Director, DILI-sim

*DILIsym® and MITOsym® are registered trademarks, and SimPops™ a trademark, of The Hamner Institutes for Health Sciences for computer modeling software and for consulting services.
The DILI-sim Initiative is a partnership between the Hamner Institutes and Pharmaceutical Companies to Minimize DILI.

Overall Goals of Simulation Project
- Improve patient safety
- Reduce the need for animal testing
- Reduce the costs and time necessary to develop new drugs
Examples of DILIsym® Applications

IVIVE

Rank compounds by risk

Preclinical biomarker study design

Preclinical

in vitro

in vivo

Single Ascending Dose

Phase II/III/IV

Clinical

DILI Dose Response Estimation

Clinical biomarker analysis

Predicting variability in response

Institute for Drug Safety Sciences
Clinical Concern with Compound X

- A novel compound (Compound X) is in development to address an important, unmet medical need
 - Target patient population would be treated in the in-patient setting

- Clinical concern
 - Dose dependent elevations in serum ALT and other biomarkers were observed in phase I clinical studies
 - No Hy’s Law cases observed
Compound X Serum Biomarkers

Clinical Data

<table>
<thead>
<tr>
<th>Daily Dose Level and Infusion Length</th>
<th>ALT Elevations within Clinical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67x - long</td>
<td>None</td>
</tr>
<tr>
<td>1x - medium</td>
<td>None</td>
</tr>
<tr>
<td>1x - long</td>
<td>None</td>
</tr>
<tr>
<td>1x - short</td>
<td>1/7 ALT > 2x ULN</td>
</tr>
<tr>
<td>1.3x - long</td>
<td>4/7 > 3x ULN</td>
</tr>
<tr>
<td>2x - short</td>
<td>2/6 ALT > 3x ULN</td>
</tr>
<tr>
<td></td>
<td>5/6 > 2x ULN</td>
</tr>
</tbody>
</table>

![Graphs showing ALT and miR-122 changes over time.](image)

ALT (U/L)

- 2X ULN
- 3X ULN

Cleaved K18 (U/L)

- 500
- 1000
- 1500
- 2000
- 2500

Time (hours)

- 0
- 96
- 192
- 288
- 384
- 480
- 576

miR-122 (Fold Change)

- 0
- 10
- 20
- 30
- 40
- 50
- 60

Time (hours)

- 0
- 96
- 192
- 288
- 384
- 480
- 576
Compound X Simulation Project Objectives

• Primary objectives for DILIsym® analysis:
 – Identify/substantiate potential mechanisms related to the hepatic effects
 – Optimize the dosing and monitoring protocols to achieve an adequate liver safety margin
DILIsym® Overview

• Multiple species: human, rat, mouse, and dog
 - Population variability

• The three primary acinar zones of liver represented

• Essential processes represented to multiple scales in interacting sub-models
 – Pharmacokinetics
 – Reactive oxygen species
 – Hepatocyte life cycle
 – Biomarkers
DILIsym® Optimization Process for Compound X Utilized *in vitro* and Clinical Data

Laboratory Experiments and Data

- Define DILIsym® setup from mechanistic *in vitro* and PK data
- Key mechanisms in play for Compound X:
 - Oxidative stress
 - ET inhibition

Modeling & Simulation

- Compare DILIsym® predictions to clinical outcomes
- Refine DILIsym® parameter values based on human studies

Clinical Data

- Extrapolate for safety margin, protocol design, and dose selection
- Extrapolate to humans
- Potential Clinical Studies

Vaquero 2007
Human SimPops™ was used for Compound X Simulations

- SimPops™ reflect inter-patient variability
- SimPops™ included mechanistic variability in:
 - ROS production and elimination processes
 - Apoptosis induction
 - Mitochondrial dysfunction pathways
- Three exposure levels per simulated human (low, medium, high)

SimPops™ Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
</tr>
<tr>
<td>Hepatocyte sensitivity to ATP levels</td>
</tr>
<tr>
<td>Hepatocyte sensitivity to ROS</td>
</tr>
<tr>
<td>ROS buffering capacity</td>
</tr>
<tr>
<td>Basal electron transport chain flux</td>
</tr>
<tr>
<td>Respiratory reserve capacity</td>
</tr>
<tr>
<td>Caspase activation proficiency</td>
</tr>
<tr>
<td>Baseline GSH levels in hepatocytes</td>
</tr>
<tr>
<td>GSH precursor transport velocity</td>
</tr>
<tr>
<td>Hepatocyte regeneration mediator production</td>
</tr>
<tr>
<td>Maximum hepatocyte regeneration velocity</td>
</tr>
</tbody>
</table>

\[N = 300 \times 3 = 900 \]
Simulations of Compound X Clinical Studies Suggest that DILIsym® Adequately Recapitulates the Observed Hepatic Effects

- 7 or fewer subjects treated per cohort vs. 900 simulations done within DILIsym®
- Dose response generally on target
- Apoptosis and necrosis were present in the simulations

<table>
<thead>
<tr>
<th>Daily Dose Level and Infusion Length</th>
<th>ALT Elevations within Clinical Data</th>
<th>Simulated ALT Elevations</th>
<th>Simulated Overall Minimum Percent Hepatocytes Viable Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67x - long</td>
<td>None</td>
<td>0/900</td>
<td>93%</td>
</tr>
<tr>
<td>1x - medium</td>
<td>None</td>
<td>39/900</td>
<td>93%</td>
</tr>
<tr>
<td>1x - long</td>
<td>None</td>
<td>13/900</td>
<td>91%</td>
</tr>
<tr>
<td>1x - short</td>
<td>1/7 ALT > 2x ULN</td>
<td>142/900</td>
<td>94%</td>
</tr>
<tr>
<td>1.3x - long</td>
<td>4/7 > 3x ULN</td>
<td>160/900</td>
<td>92%</td>
</tr>
<tr>
<td>2x - short</td>
<td>2/6 ALT > 3x ULN 5/6 > 2x ULN</td>
<td>815/900</td>
<td>39%</td>
</tr>
</tbody>
</table>

ALT Elevation Color Key

- No elevations
- 1%-25% elevations
- 26%-50% elevations
- 51%-100% elevations

Fraction Viable Hepatocyte Color Key

- FVL > 0.95
- 0.9 < FVL < 0.95
- 0.8 < FVL < 0.9
- FVL < 0.80

*Simulated ALT elevation is 3x baseline or >= 90 U/L
Simulated ALT Dynamics were Similar to Clinical Data

- Simulations done in single simulated human (red line)
- Simulated peak ALT occurs at a similar Tmax to that observed in clinical study
Prospective Predictions of Medium Length Compound X Infusions at Increasing Doses Suggested a Three-fold Safety Margin

- Target dosing level was 1x, medium length infusion
- Predicted safety margin of 3x the target level
- Without ALT stopping criterion (results not shown)
 - Safety margin was reduced
- What makes simulated humans susceptible?
 - Antioxidant effectiveness, caspase activation capacity, and body weight (exposure)

<table>
<thead>
<tr>
<th>Daily Dose Level and Infusion Length</th>
<th>ALT Elevations within Clinical Data</th>
<th>Simulated ALT Elevations</th>
<th>Simulated Overall Minimum Percent Hepatocytes Viable Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75x - medium</td>
<td>Study not conducted</td>
<td>4/900</td>
<td>91%</td>
</tr>
<tr>
<td>1x – medium</td>
<td>None observed</td>
<td>39/900</td>
<td>91%</td>
</tr>
<tr>
<td>2x – medium</td>
<td>Study not conducted</td>
<td>509/900</td>
<td>89%</td>
</tr>
<tr>
<td>3x – medium</td>
<td>Study not conducted</td>
<td>797/900</td>
<td>16%</td>
</tr>
<tr>
<td>4.5x - medium</td>
<td>Study not conducted</td>
<td>899/900</td>
<td>15%**</td>
</tr>
</tbody>
</table>

ALT Elevation Color Key
- No elevations
- 1%-25% elevations
- 26%-50% elevations
- 51%-100% elevations

Fraction Viable Hepatocyte Color Key
- FVL > 0.95
- 0.9 < FVL < 0.95
- 0.8 < FVL < 0.9
- FVL < 0.80

**Simulated death occurred

*Simulated ALT elevation is 3x baseline or >= 90 U/L

Clinical Data and Simulation Results
Prospective Predictions of Weight-Adjusted Compound X Dosing Suggested an Improved Safety Margin

- Equivalent weight-adjusted (WA) doses calculated
- Predicted safety margin of 4.5x the target level

<table>
<thead>
<tr>
<th>Daily Dose Level and Infusion Length</th>
<th>ALT Elevations within Clinical Data</th>
<th>Simulated ALT Elevations</th>
<th>Simulated Overall Minimum Percent Hepatocytes Viable Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75x WA - medium</td>
<td>Study not conducted</td>
<td>0/900</td>
<td>92%</td>
</tr>
<tr>
<td>1x WA – medium</td>
<td>Study not conducted</td>
<td>16/900</td>
<td>91%</td>
</tr>
<tr>
<td>2x WA – medium</td>
<td>Study not conducted</td>
<td>502/900</td>
<td>90%</td>
</tr>
<tr>
<td>3x WA – medium</td>
<td>Study not conducted</td>
<td>813/900</td>
<td>83%</td>
</tr>
<tr>
<td>4.5x WA– medium</td>
<td>Study not conducted</td>
<td>900/900</td>
<td>15%**</td>
</tr>
</tbody>
</table>

Simulated death occurred

*Simulated ALT elevation is 3x baseline or >= 90 U/L; WA = weight-adjusted dosing

ALT Elevation Color Key
- No elevations
- 1%-25% elevations
- 26%-50% elevations
- 51%-100% elevations

Fraction Viable Hepatocyte Color Key
- FVL > 0.95
- 0.9 < FVL < 0.95
- 0.8 < FVL < 0.9
- FVL < 0.80

ALT stop criteria used
Compound X Simulation Project Objectives

• Primary objectives for DILIsym® analysis:
 – Identify/substantiate potential mechanisms related to the hepatic effects
 • In vitro data, cK18 data, and simulation results combined to point to oxidative stress as the most likely mechanism
 – Optimize the dosing and monitoring protocols to achieve an adequate liver safety margin
 • Daily monitoring of circulating liver enzyme levels and weight-adjusted dosing were identified as strategies for reducing risk
Novel Biomarker Assessments in Early Phases of Drug Development

• Cleaved K18 data supported the mechanism and mode of cell death suggested by the simulations

• Simulations pointed to greater sensitivity for cK18 than ALT

• How should cleaved K18 elevations be applied clinically?
 – Is apoptosis good or bad?
 – Stop-rule applications?
 – Clinically relevant levels of cK18?

Clinical Data and Simulation Results
DILIsym® Can Be Applied to the Rational Proposal of Cut-Off Levels for Cleaved Cytokeratin-18 (cK18)

- Simulations can be used to account for the number of dying hepatocytes for a given increase in ALT
 - e.g. 5 hepatocytes shown to the right
- An equivalent level of hepatocyte death can be simulated with apoptosis
- The resulting increase in cK18 can be noted and applied to suggest clinically relevant cut-offs

<table>
<thead>
<tr>
<th>Fold Change for ALT</th>
<th>Clinically relevant cut-offs in DILIsym®</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>60 U/L</td>
</tr>
<tr>
<td>3x</td>
<td>90 U/L</td>
</tr>
<tr>
<td>10x</td>
<td>300 U/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fold Change for cK18</th>
<th>Clinically equivalent cut-offs in DILIsym®</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25x</td>
<td>175 U/L</td>
</tr>
<tr>
<td>1.5x</td>
<td>210 U/L</td>
</tr>
<tr>
<td>3.25x</td>
<td>455 U/L</td>
</tr>
</tbody>
</table>

Baseline ALT 30 U/L
2x baseline ALT 30+30 U/L
Baseline cK18 140 U/L
1.25x baseline cK18 140+35 U/L

Necrotic cell death inducing 30 U/L increase
Equivalent cell death via apoptosis induces 35 U/L increase

Clinical Data and Simulation Results
Biomarker Questions Highlighted by Compound X Simulation Project

• Should emerging biomarkers (HMGB1, cK18, K18, miR122, etc.) be assessed in the clinical trial setting?

• How should such data be interpreted when considering apoptosis and necrosis, immune activation, etc., with respect to patient safety?

• What levels of cK18 should be flagged as significant?
 – DILIsym® provides a starting place to address this question
Acknowledgements

- Drug-Induced Liver Injury (DILI) Conference XV Program Organizers
- Sponsor of Compound X simulation project
- DILI-sim members