Minjun Chen, PhD
Principal Investigator
National Center for Toxicological Research, FDA

Click to view Biosketch and Presentation Abstract
or page down to review presentation
The “Rule of 2” – Do Drug Properties Predict Drug-Induced Liver Injury (DILI)?

Minjun Chen, Ph.D.
Division of Bioinformatics and Biostatics, The US FDA’s National Center for Toxicological Research
Minjun.chen@fda.hhs.gov

Views expressed in this presentation are those of the presenter and not necessarily those of the U.S. FDA.

March 19th, 2015
Translational Challenges in DILI Risk Assessment

Preclinical toxicology often failed to predict DILI risk in humans

- “High-dosing of healthy animals” test identified < 50% DILI liability in humans
- Conventional \textit{in vitro} assays have very limited prediction for DILI risk assessment
- No biomarker is available to identify the susceptible patients prior to drug treatment

Liver Toxicity Knowledge Base (LTKB)

Search “LTKB” @ Google

Assess DILI risk of new chemicals

Chemical structure & similarity search

Query interface

Link to external resources, e.g., PubMed, Wiki, LiverTox

Excel-like spreadsheet

Drug specific data
- Japanese TGX Project
 >130 drugs
 4 testing systems
 Multi-doses and times
 >20,000 arrays
- DrugMatrix
 ~700 chemicals
 ~5000 arrays
- Others (e.g., in-house)
 - In house *in vitro* data
 - Human primary hepatocytes
 - Rat primary hepatocytes
 - HepG2
 - Tox21 and ToxCast
 - Others

- Chemical structure (SAR/QSAR)
- Daily dose (Cmax)
- Lipophilicity
- Reactive Metabolites
- P450 activities

- Therapeutic uses
- Side effects
- Pharmacological class
 - ATC
 - FDA classification
- DILI types
- DILI annotation based on FDA drug label
- Severe DILI
- Case reports

How to Assess DILI Risk in Humans for a Drug?

• Three attributes of a drug are important for its DILI assessment:
 ❖ Causality: was liver injury caused by drug or other cause
 ❖ Incidence: how many case reports are considered significant
 ❖ Severity: elevated ALT; Hy’s law; disability and hospitalization, liver failure; liver transplantation or death

• Risk = (How likely) x (How many) x (How severe)

This is opinion based !!!
Drug Labeling is not Perfect but Probably the Best and Mostly Consistent Information We Have

- Drug labeling is not perfect
 - Opinion based, not based on pre-defined criteria
 - Not according to a consistent or scientifically justified master plan
 - “Guilty by Association”...carryover from other drugs
 - Adverse Reactions: “This section must list the adverse reactions that occur with the drug and with drugs in the same pharmacologically active and chemically related class, if applicable”

- Can we use drug labeling to identify more dangerous drugs?
 - The question is how to mitigate the inherent defects in labeling!
Drugs assigned to labeling sections

- Box Warnings
- Warnings & Precautions
- Adverse Reactions
- None of above

DILI Classification

- Most-DILI-concern
- Less-DILI-concern
- No-DILI-concern

Withdrawn drugs

DILI severity

Keywords for text-mining & manual reading

- fatty liver
- steatosis
- steatohepatitis
- cholestatic hepatitis
- cholestasis
- hepatopathy
- hepatomegaly
- veno-occlusive disease

- ALT/AST
- SGPT/SGOT
- liver enzyme transaminase
- aminotransferase
- liver/hepatic injury
- liver/hepatic function test
- liver/hepatic dysfunction

- hepatotoxicity
- liver/hepatic effect
- liver/hepatic toxicity
- liver/hepatic reaction
- liver/hepatic damage
- liver/hepatic warning
- liver/hepatic disorder
- liver/hepatic impairment

- bilirubinemia
- hyperbilirubinemia
- jaundice
- liver/hepatic failure
- liver/hepatic necrosis
- liver/hepatic decompensation
- liver/hepatic encephalopathy
- liver/hepatic transplantation

The Rule of 2 ('RO2'): High Lipophilicity ($\log P \geq 3$) + High Daily Dose ($DD \geq 100$ mg) Predicts DILI

Observed in 164 drugs
Verified by 179 drugs
Demonstrated on 5 drug pairs
Applied to co-medication

Assess ‘RO2’ Model by Drug Pairs

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Daily dose (mg/day)</th>
<th>AlogP</th>
<th>‘RO2’ test</th>
<th>Label Section</th>
<th>DILI Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macitentan</td>
<td>10</td>
<td>3.5</td>
<td>Negative</td>
<td>Warning & Precaution</td>
<td>Less-DILI-Concern</td>
</tr>
<tr>
<td>Ambrisentan</td>
<td>7.5</td>
<td>3.66</td>
<td>Negative</td>
<td>Adverse Reaction</td>
<td>Less-DILI-Concern</td>
</tr>
<tr>
<td>Bosentan</td>
<td>250</td>
<td>3.95</td>
<td>Positive</td>
<td>Box Warning</td>
<td>Most-DILI-Concern</td>
</tr>
<tr>
<td>Sitaxsentan</td>
<td>100</td>
<td>3.7</td>
<td>Positive</td>
<td>Withdrawn</td>
<td>Most-DILI-Concern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Daily dose (mg/day)</th>
<th>AlogP</th>
<th>‘RO2’ test</th>
<th>Label Section</th>
<th>DILI Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolpidem</td>
<td>10</td>
<td>3.36</td>
<td>Negative</td>
<td>Adverse reaction</td>
<td>Less-DILI-concern</td>
</tr>
<tr>
<td>Alpidem</td>
<td>150</td>
<td>5.46</td>
<td>Positive</td>
<td>Withdrawn</td>
<td>Most-DILI-Concern</td>
</tr>
<tr>
<td>Piglitazone</td>
<td>6</td>
<td>3.91</td>
<td>Negative</td>
<td>Warnings & Precautions</td>
<td>Less-DILI-concern</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>30</td>
<td>3.36</td>
<td>Negative</td>
<td>Warnings & Precautions</td>
<td>Less-DILI-concern</td>
</tr>
<tr>
<td>Troglitazone</td>
<td>400</td>
<td>5.1</td>
<td>Positive</td>
<td>Withdrawn</td>
<td>Most-DILI-Concern</td>
</tr>
</tbody>
</table>
More of ‘RO2’ Successful and Failed Cases

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Daily dose (mg/day)</th>
<th>AlogP</th>
<th>‘RO2’ test</th>
<th>Label Section</th>
<th>DILI Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entacapone</td>
<td>1000</td>
<td>1.66</td>
<td>Negative</td>
<td>No mentioned</td>
<td>No-DILI-concern</td>
</tr>
<tr>
<td>Tolcapone</td>
<td>450</td>
<td>3.13</td>
<td>Positive</td>
<td>Box warning</td>
<td>Most-DILI-Concern</td>
</tr>
<tr>
<td>Trazodone</td>
<td>300</td>
<td>2.42</td>
<td>Negative</td>
<td>Adverse reaction</td>
<td>Less-DILI-concern</td>
</tr>
<tr>
<td>Nefazodone</td>
<td>400</td>
<td>4.42</td>
<td>Positive</td>
<td>Withdrawn</td>
<td>Most-DILI-Concern</td>
</tr>
</tbody>
</table>

‘RO2’ failed cases (30-35% sensitivity and 90-95% specificity)

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Daily dose (mg/day)</th>
<th>AlogP</th>
<th>‘RO2’ test</th>
<th>DILI concern</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trovafloxacin</td>
<td>200</td>
<td>-0.91</td>
<td>False Negative</td>
<td>Withdrawn</td>
<td></td>
</tr>
<tr>
<td>Ximelagatran</td>
<td>48</td>
<td>1.16</td>
<td>False Negative</td>
<td>Withdrawn</td>
<td></td>
</tr>
<tr>
<td>Aliskiren</td>
<td>150</td>
<td>3.32</td>
<td>False Positive</td>
<td>No-DILI-concern</td>
<td>Bioavailability (2.6%)</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>300</td>
<td>3.38</td>
<td>False Positive</td>
<td>No-DILI-concern</td>
<td>Antihistamine, Modulate immune</td>
</tr>
</tbody>
</table>
‘RO2’ Validation by FDA-Approved Oral Medications

748 oral drugs

168 most-DILI-concern
Sensitivity = 72/168 (43%)

193 no-DILI-concern
Specificity = 1 - 11/193 (94%)

387 less-DILI-concern
RO2 pos% = 50/387 (13%)

Withdrawn
RO2 pos%= 51%

Box warning
RO2 pos%= 38%

Warnings
RO2 pos%= 40%

Immune modulation:
diphenhydramine, orphenadrine, chlorcyclizine, flavoxate, benzogetamine, mifepristone, pentazocine, ursodeoxycholic acid

Poor bioavailability(%): aliskiren (3%)

Unknown: retigabine, tapentadol 12

* 23 of 50 RO2 positives were assigned as DILI positives by at least one literature
Selected Failed Drug Development Due to Hepatotoxicity

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Daily Dose (mg/day)</th>
<th>AlogP</th>
<th>RO2 test</th>
<th>Safety Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP260</td>
<td>3000*</td>
<td>5</td>
<td>Positive</td>
<td>Liver toxicity were found in beagle dog</td>
</tr>
<tr>
<td>Casopitant</td>
<td>150</td>
<td>4.73</td>
<td>Positive</td>
<td>Liver toxicity were found in Phase III patients</td>
</tr>
<tr>
<td>Tasosartan</td>
<td>200</td>
<td>3.051</td>
<td>Positive</td>
<td>Phase III clinical trials showed elevated transaminases</td>
</tr>
<tr>
<td>Fiduxosin</td>
<td>100</td>
<td>4.215</td>
<td>Positive</td>
<td>Discontinued due to liver toxicity</td>
</tr>
<tr>
<td>Alaproclate</td>
<td>100*</td>
<td>2.695</td>
<td>Negative</td>
<td>Observed liver complications in rodent studies</td>
</tr>
<tr>
<td>Pafuramidine</td>
<td>100</td>
<td>2.77</td>
<td>Negative</td>
<td>Liver abnormalities identified in healthy volunteers</td>
</tr>
<tr>
<td>Aplaviroc</td>
<td>1200</td>
<td>1.386</td>
<td>Negative</td>
<td>Severe hepatotoxicity observed in Phase III studies</td>
</tr>
<tr>
<td>Pralnacasan</td>
<td>300</td>
<td>0.132</td>
<td>Negative</td>
<td>Liver abnormality observed at one species of animals</td>
</tr>
<tr>
<td>Fialuridine</td>
<td>15</td>
<td>-1.228</td>
<td>Negative</td>
<td>Unexpected fulminant liver failure in patients</td>
</tr>
</tbody>
</table>

* Equivalent human dose

Call for the sharing of the failed drugs!
Improve ‘RO2’ by Integrating High-Content Screening (HCS) Assays

Human hepatotoxicity

<table>
<thead>
<tr>
<th>Model</th>
<th>Test result</th>
<th>Human hepatotoxicity</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th># drugs requiring HCS test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive (N=49)</td>
<td>Negative (N=21)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO2-HCS</td>
<td>Positive</td>
<td>27</td>
<td>1</td>
<td>67%</td>
<td>55%</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>22</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCS</td>
<td>Positive</td>
<td>19</td>
<td>0</td>
<td>57%</td>
<td>39%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>30</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO2</td>
<td>Positive</td>
<td>13</td>
<td>1</td>
<td>47%</td>
<td>27%</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>36</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy, Sensitivity, Specificity

- **RO2-HCS**: 67% accuracy, 55% sensitivity, 95% specificity
- **HCS**: 57% accuracy, 39% sensitivity, 100% specificity
- **RO2**: 47% accuracy, 27% sensitivity, 95% specificity

Total positives (N=49)

- **HCS**: 13 positives
- **RO2**: 6 positives
- **RO2-HCS**: 7 positives

Drug Properties or Host Factors?

Finally, they stop talking, start listening and collaborate to "see" the full elephant.
Take-home Messages

• Along with host factors, drug properties also contribute to the prediction of DILI

• LTKB provides a centralized repository of diverse DILI-related drug properties data.

• Several predictive models were developed
 ✷ The ‘RO2’ has added value in identifying idiosyncratic DILI
 ✷ *In vitro* assays can be enhanced by integrating the ‘RO2’

• Improvements have been made, but still a long way to go.
Acknowledgements

LTKB interest group:
- Eileen E Navarro Almario
- John Senior
- Marc Stone
- Tina Burgrass
- Ruyi He
- Shashi Amur
- Jane Bai
- Crentsil Victor
- Andrew Mulberg
- Mark Avigan

Non-FDA collaborators:
- Jurgen Borlak (Hannover Medical School, Germany)
- Ayako Suzuki (UAMS, US)
- Raul Andrade & Maribel Lucena (Spanish hepatotoxicity registry)
- Xiaowei Xu (UALR, US)

NCTR:
- Weida Tong
- Gerry Zhou
- Ke Yu
- Jie Zhang
- Yuping Wang
- Hong Fang
- Huixiao Hong
- Joshua Xu
- Halil Bisgin
- Zhichao Liu
- Chuchu Hu

FDA Supports:
- Critical Path Initiatives
- Office of Women’s Health (OWH)
- Chief Scientist Challenge Grant
- Office of International Program