INTERACTIONS BETWEEN DRUG PROPERTIES AND HOST FACTORS: ADAPTIVE MECHANISMS

Ayako Suzuki, MD, PhD, MSc
Gastroenterology, Central Arkansas Veterans Healthcare System, Little Rock, AR

Gastroenterology, University of Arkansas for Medical Sciences, Little Rock, AR
INTRODUCTION

• Drug-induced liver injury (DILI) is a multifactorial disorder
• Certain drug properties are associated with severe clinical hepatotoxicity
• Drug-induced ALT elevations in <0.001% to 20% prescriptions
 • Most resolve
 • Non-progressive chronic liver enzyme elevation
 • Rare serious liver injury, acute liver failure
• Drug and host: two key players in determining DILI risks

• What determines DILI risk, phenotypes and outcomes?
DRUG-HOST INTERPLAY IN HUMAN HEPATOTOXICITY
- CONCEPT -

- Interplay of specific drug and host attributes
 - Cellular, molecular levels
 - Injury process
 - Inflammation
 - Immunological responses
 - Tissue regeneration
- Determine individual susceptibility to specific drug (or drug class), phenotype, and outcome

DRUG’S MULTIFACETED PROPERTIES

- **Physiochemical**: molecular weight, lipophilicity, solubility
- **Pharmacological**: dose, metabolism, elimination, protein binding
- **Toxicological**: reactive metabolite formation, mitochondrial toxicity, oxidative stress
- **Targeted biophysiological**: therapeutic class
- **Off-target biophysiological**: cellular biology, injury/repair, immune response, visceral blood flow
- **Immunological**: some drugs induce specific immunoreactions
HOST FACTORS

- Genetic variants
- Race/ethnicity
- Age
- Gender
- Sex hormones
- Co-morbidity
- Co-medications
- Environmental: alcohol, smoking, nutrients,..
- Gut flora: gut-liver interaction, impact immune/inflammatory response

- Drug delivery to the liver
- Drug metabolism/transport
- Cellular stress response
- Inflammation
- Immune response
- Tissue injury & repair
PRELIMINARY CONCEPTUAL FRAMEWORK FOR DRUG-HOST INTERACTION

Drug properties

Cellular injury initiation
- Pharmacological responses
- Toxicological responses
- Cell death

Host response to injury insult
- Immune/inflammation
- Repair
- Tissue injury

Clinical phenotype and outcome

Host factors

J Hep. 63: 503, 2015 (Modified)
DEFINITION OF ‘ADAPTATION’

- **Adaptation**: diverse host responses to minimize toxic cellular insults, inflammation, and tissue injury, leading to the resolution of cellular stress, cellular dysfunction, inflammation and tissue damage.
 - Cellular stress responses
 - Inflammation/immune response
 - Tissue injury/repair
- **Compromised adaptation** results in clinically significant DILI and may lead to serious clinical outcomes
OUTLINE

• Drug-host interaction in:
 • Cellular stress responses
 • Inflammation/Immune response
 • Injury/Repair

• Future investigations of DILI drug-host interactions
 • Experimental
 • Clinical
 • Bi-directional translation in research network
DRUG-HOST INTERACTION IN CELLULAR STRESS RESPONSE
DRUG-HOST INTERACTION IN CELLULAR STRESS RESPONSE
COVALENT BINDING-PROTEIN DAMAGE & REPAIR/DEGRADATION

Drug
- Extensive liver metabolism
 - Atorvastatin
 - Disulfiram
 - Terbinafine

Host
- Alterations in drug metabolizing enzymes
 - Female sex ↑
 - Inducers/inhibitors ↑↓
- Protein repair & degradation
 - Thioredoxin
 - Thioredoxin reductase
 - Glutathione reductase
 - Methionine sulfoxide reductase
 - Lysosomal functions
 - Aging

Reactive metabolite formation
- APAP
- Isoniazid
- Phenytoin
- Carbamazepine
INTERPLAY OF GENDER, AGE AND DRUG PROPERTIES IN DRUG-INDUCED LIVER INJURY: ANALYSIS OF ADVERSE EVENT REPORTING AT WHO VIGIBASE™

significant hepatic metabolism

Drug classification

- No gender difference: 75%
- Gender specific (F > M) *: 87%
- Gender specific (F > M) #: 85%
- Gender specific (M > F): 57%

*: overall
#: young (age <50) only

(DDW 2015)
Genetic Variations in \textit{TXNRD1} as Potential Predictors of Drug-Induced Liver Injury

Jae-Woo Kwon,1,2 Eun-Soon Shin,3 Jong-Eun Lee,3 Sang-Heon Kim,4 Sang-Hoon Kim,5 Young-Koo Jee,6 Yoon-Keun Kim,7 Hae-Sim Park,8 Kyung-Up Min,1,2 Heung-Woo Park,1,2*; The Adverse Drug Reaction Research Group in Korea

- 118 DILI cases
- Causal drugs: 57.6\% anti-TB drugs, 18.6\% antibiotics, 5.9\% anti-epileptic drugs
- 7 SNPs of thioredoxin reductase 1 gene
- No associations with any of 7 SNPs
- Significant association with a TTA haplotype (below)

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Case n=118 (236 haplotypes)</th>
<th>Control n=120 (240 haplotypes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCG</td>
<td>127 (53.8%)</td>
<td>128 (53.3%)</td>
</tr>
<tr>
<td>TTA</td>
<td>73 (30.9%)</td>
<td>47 (19.6%)</td>
</tr>
<tr>
<td>GCA</td>
<td>34 (14.4%)</td>
<td>42 (17.5%)</td>
</tr>
</tbody>
</table>
Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

Merrie Mosedale a, Hong Wu b, C. Lisa Kurtz a, Stephen P. Schmidt b, Karissa Adkins b,*, 1, Alison H. Harrill a,c,1

a Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
b Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT 06340, USA
c University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Drug (PF-04287881)
7-day exposure

Mouse diversity panel (34 strains)

mRNA expression

Resistant strains
Susceptible strains

Elevated serum ALT (88%)
Hepatocellular hypertrophy
Hepatocellular single cell necrosis
Kupffer cell vacuolation (phospholipidosis)

Differentially expressed pathways

Protein ubiquitination pathway

Drug transport, phospholipid metabolism, lysosomal function
DRUG-HOST INTERACTION IN CELLULAR STRESS RESPONSE

CELLULAR STRESS/ALTERED STRESS RESPONSE

Drug

Mitochondrial toxicity/oxidative stress
- Valproic acid
- APAP
- Troglitazone
- Flutamine
- Stavudine

ER stress
- Indomethacin
- Diclofenac
- Benzodiazepines
- Valproic acid
- APAP

Host

Altered stress responses
- Increased cellular oxidants
- Depleted antioxidants
- Fatty liver
- Impaired cellular protein repair/degradation
- Mitochondrial dysfunctions
- Impaired mt DNA repair

Altered ER stress response
- Pre-existing ER stress
- Medications to induce/ameliorate ER stress
RELATIONSHIP AMONG LYSOSOMAL DYSFUNCTION, OXIDATIVE STRESS, AND MITOCHONDRIAL DYSFUNCTION - A MODEL OF PARKINSON DISEASE

Impaired degradation of macromolecules and damaged organelle

(Molecular Neurodegradation 2009 4:24)
PHARMACOLOGICAL MODULATORS OF ER STRESS

<table>
<thead>
<tr>
<th>Category</th>
<th>Drug(s)</th>
<th>Mediator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mTOR inhibitors</td>
<td>Rapamycin</td>
<td>Autophagy ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRE1/JNK ↓</td>
</tr>
<tr>
<td>Chemical chaperones</td>
<td>4-PBA</td>
<td>GRP78 ↓, CHOP ↓</td>
</tr>
<tr>
<td></td>
<td>TUDCA</td>
<td>Calcium efflux ↓, eIF2α ↓, CHOP ↓</td>
</tr>
<tr>
<td>AMPK activators</td>
<td>Metformin</td>
<td>AMPK ↑, AMPK ↑, PPARδ ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eIF2α ↓, JNK ↓, IRS-1 ↓</td>
</tr>
<tr>
<td></td>
<td>Salicylate/Salsalate</td>
<td>AMPK ↑</td>
</tr>
<tr>
<td></td>
<td>AICAR</td>
<td>AMPK ↑</td>
</tr>
<tr>
<td>GLP-1 receptor agonists and DPP-4 inhibitors</td>
<td>Exenatide</td>
<td>PKA ↑, ATF4 ↑, BIP ↑, Bcl2 ↑, JunB ↑, SERCA ↑, Autophagy ↑, C/EBPβ ↓, Akt/PERK/CHOP ↓, IRE1α/JNK-p38 ↓</td>
</tr>
<tr>
<td></td>
<td>Vildagliptin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemigliptin</td>
<td></td>
</tr>
<tr>
<td>PPARs agonists</td>
<td>Fenoconate</td>
<td>IRE1α/XBP1/JNK ↓, AMPK ↑, eNOS ↑</td>
</tr>
<tr>
<td></td>
<td>Pioglitazone</td>
<td>SERCA ↑, SCD1 ↑</td>
</tr>
<tr>
<td></td>
<td>GW1516</td>
<td>AMPK ↑, ERK1/2 ↓, Autophagy ↑</td>
</tr>
<tr>
<td>ARBs</td>
<td>Valsartan</td>
<td>PUMA ↓, GRP78 ↓</td>
</tr>
<tr>
<td></td>
<td>Losartan</td>
<td>PLC-IP3-calciim ↓</td>
</tr>
<tr>
<td></td>
<td>Olmesartan</td>
<td>GRP78 ↓, CHOP ↓</td>
</tr>
<tr>
<td></td>
<td>Telmisartan</td>
<td>GRP78 ↓, CHOP ↓</td>
</tr>
</tbody>
</table>

Reporting frequency of liver events ↓ in VigiBase™

APAP, INH, VA
DRUG-HOST INTERACTION IN INFLAMMATION & IMMUNE RESPONSE
DRUG-HOST INTERACTION IN INFLAMMATION/IMMUNE RESPONSE

Hepatitis
- Ibuprofen
- Isoniazid
- Ketoconazole

Pro/anti-inflammatory
- Genetic variants (IL-4, IL-10, IL-6, ..)
- Sex hormones (E2, P4, ..)
- Co-medications
- Altered microbiome
- Intestinal disease (hepatic LPS influx↑)
- Obesity

Immune-mediated
- Trimethoprim/sulfamethoxazole
- Ciprofloxacin
- Halothane
- Amodiaquine

Immune response
- HLA variants
- Gender
- Sex hormones
- Immunomodulators
- Immunosuppressants
DRUG-HOST INTERACTION IN TISSUE INJURY & REPAIR
Drug-Host Interaction in Injury/Repair

Hepatocyte necrosis
- APAP
- Diclofenac
- Flutamine

Apoptosis vs. necrosis
- Female sex \rightarrow apoptosis?
- Impaired cellular energy supply \rightarrow necrosis?

Altered tissue repair
- Aging \downarrow
- Histone acetylase / de-acetylase (Valproate, hydralazine deriv.) \downarrow
- \downarrow FXR (reduced bile acid pool) \downarrow
- Co-medications $\downarrow\uparrow$

Cholestatic injury
- Methyltestosterone
- Amoxicillin/Clavulanate
- Clarithromycin
- Azithromycin

Cholangiocyte injury/repair
- Male gender ?
- Estrogens?
FUTURE INVESTIGATIONS OF DRUG-HOST INTERACTIONS IN DILI
EXPERIMENTAL INVESTIGATIONS

Introduce **biological variances** to experimental designs (e.g., sex, sex hormones, age) to assess specific drug-host interactions

- Established DILI mouse models
- Human primary hepatocytes
- Engineered human liver models
- Organs-on-a-chip
- Induced pluripotent stem cells
NIH to balance sex in cell and animal studies

Janine A. Clayton and Francis S. Collins unveil policies to ensure that preclinical research funded by the US National Institutes of Health considers females and males.

(Nature 509, 282-283, 2014)
CLINICAL INVESTIGATIONS

• Integration of drug properties in clinical/genetic analysis
• Further develop knowledge base of:
 • Drug properties (Liver Toxicity Knowledge Base, NCTR/FDA)
 • Degree of hepatotoxicity (DILI Rank, Drug Discovery Today, 2016)
 • Clinical phenotypes – unified resource?
• Implement new data-mining tools (e.g., topic modeling) - combine genetic and clinical data?
• Theoretical approach vs. unsupervised approach
DEVELOPMENT OF RESEARCH NETWORK SYNTHESIZING MULTIDISCIPLINARY RESEARCH FINDINGS IN DILI

VA HSRD: HX001865-01A1 Suzuki
SUMMARY

• Heterogeneity in risks, phenotypes, and outcomes of DILI may be explained by multilayered interplay of drug properties and host attributes in adaptive mechanisms.

• Future investigations incorporating drug properties, biological variances, and their potential interactions in study designs will aid in better understanding of DILI pathobiology and facilitate future personalized drug safety.
acknowledgements

VA DILI Research collaboration
James S Williams (CAVHS)
Mark A. Austen (CAVHS)
Teresa J Hudson, PharmD, PhD (CAVHS)
Chung Ming-Hua, PhD (UAMS)
Christine M Hunt, MD, MpH (Durham VAMC)
Ebenezer O George, PhD (Univ. Memphis)
Dale D Bowman, PhD (Univ. Memphis)

NCTR collaboration
Bioinformatics and Biostatistics
Weida Tong, PhD
Minjun Chen, PhD
Yuping Wang, MD, PhD

System Biology
Noriko Nakamura, PhD
Xi Yang, PhD

Drug-induced liver injury network
Herbert Bonkovsky, MD
Robert Fontana, MD
David Kleiner, MD
Hans Tillmann, MD
Huiman Barnhart, PhD
Jiezhun Gu

Spanish DILI Registry
Raul J Andrade, MD
M. Isabel Lucena, MD
Andres Gonzalez Jimenez

International DILI consortium
A-H Maitland-Van der Zee, PharmD, PhD
Guruprasad Aithal, MD
Ann Daly, PhD

Other collaboration
Anna Mae Diehl, MD (Duke Univ.)
Thomas Price, MD (Duke Univ.)
John Cullen, VMD, PhD (NCSU)
Thank you for your attention