The DILI-sim Initiative: An Update

June 6, 2017

Paul B. Watkins, M.D.
Institute for Drug Safety Sciences
Eshelman School of Pharmacy
University of North Carolina- Chapel Hill
Disclosure

I direct the DILI-sim Initiative and own equity in the spin off company DILIsym Services, Inc. which was acquired June 1, 2017 by Simulations Plus.
The DILI-sim Initiative Partners

DILIsym® Services

DILIsym®

strellas

GILEAD

janssen

Lilly

FDA

Takeda

abbvie

Daiichi-Sankyo

Pfizer

MERCK

Mitsubishi Tanabe Pharma

GlaxoSmithKline

Bristol-Myers Squibb

Institute for Drug Safety Sciences
DILIsym Sub-Models
DILIsym Integrates Multiple Inputs to Simulate/Predict Hepatotoxicity

Exposure

- Pharmacokinetics

Mechanisms

- Bile Acid Transporter Inhibition
- Mitochondrial Respiration
- ROS Generation

Interpatient Variability

- Unique Parameter Combinations

Simulated Frequency & Severity of Liver Injury

Institute for Drug Safety Sciences
DILIsym Performance Review – the Validation Approach

<table>
<thead>
<tr>
<th>Drug</th>
<th>Injury Frequency</th>
<th>Injury Dose-Response</th>
<th>Injury Severity</th>
<th>Injury Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG009 (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMG 853 (Clean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolcapone (DILI)</td>
<td></td>
<td></td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td>Entacapone (Clean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methapyrilene (Clean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosentan (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan (Clean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound A (DILI)</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound D (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound B (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound C (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etomoxir (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound E (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troglitazone (DILI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pioglitazone (Clean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Color Key – Accuracy of DILIsym

- **Excellent**
- **Good**
- **Fair**
- **Poor**
- **Unavailable**

Clinical Data and Simulation Results

Institute for Drug Safety Sciences
Conclusion

DILIsym modeling has been able to correctly predict the liver safety profiles of ~90% (21/23) of the validation set of drugs tested so far.
The Rates of Serum ALT Elevations In All Four Drugs Are Reasonably Predicted by DILIsym

Data presented at Nov 4 2017 anti-infective Ad com

<table>
<thead>
<tr>
<th>Compound</th>
<th>Protocol</th>
<th>Peak ALT > 3X ULN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed*</td>
</tr>
<tr>
<td>Solithromycin</td>
<td>Oral (CE01-300)</td>
<td>3.2%</td>
</tr>
<tr>
<td></td>
<td>IV-to-Oral (CE01-301)</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

* Patients with normal ALT at baseline

Clinical Data and Simulation Results

Modeling work supported by Cempra
The Rates of Serum ALT Elevations In All Four Drugs Are Reasonably Predicted by DILIsym

Data presented at Nov 4 2017 anti-infective Ad com

<table>
<thead>
<tr>
<th>Compound</th>
<th>Protocol</th>
<th>Peak ALT > 3X ULN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed*</td>
</tr>
<tr>
<td>Solithromycin</td>
<td>Oral (CE01-300)</td>
<td>3.2%</td>
</tr>
<tr>
<td></td>
<td>IV-to-Oral (CE01-301)</td>
<td>5.5%</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>500 mg QID 10 days</td>
<td>1-2%</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>500 mg BID 7 days</td>
<td>1-2%</td>
</tr>
</tbody>
</table>

Modeling work supported by Cempra

Clinical Data and Simulation Results

* Patients with normal ALT at baseline
The rates of serum ALT elevations in clinical trials are reasonably predicted by DILIsym.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Protocol</th>
<th>Peak ALT > 3X ULN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed</td>
</tr>
<tr>
<td>Solithromycin</td>
<td>Oral (CE01-300)</td>
<td>5.4% (3.2%)</td>
</tr>
<tr>
<td></td>
<td>IV-to-Oral (CE01-301)</td>
<td>9.1% (5.5%)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>500 mg QID 10 days</td>
<td>1-2%</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>500 mg BID 7 days</td>
<td>1-2%</td>
</tr>
<tr>
<td>Telithromycin</td>
<td>800 mg QD 10 days</td>
<td>0.0-0.8%</td>
</tr>
</tbody>
</table>

* Patients with normal ALT at baseline
Conclusions

DILIsym predicted the incidence of elevations in serum ALT across the macrolide/ketolide class
DILIsym Integrates Multiple Inputs to Simulate/Predict Hepatotoxicity

Exposure
- Pharmacokinetics

Mechanisms
- Bile Acid Transporter Inhibition
- Mitochondrial Respiration
- ROS Generation

Interpatient Variability
- Unique Parameter Combinations

Simulated Frequency & Severity of Liver Injury
- Analysis of Mechanisms
DILIsym Integrates Multiple Inputs to Simulate/Predict Hepatotoxicity

Exposure
- Pharmacokinetics

Mechanisms
- Bile Acid Transporter Inhibition
- Mitochondrial Respiration
- ROS Generation

Interpatient Variability
- Unique Parameter Combinations

Simulated Frequency & Severity of Liver Injury

Analysis of Mechanisms
DILIsym Integrates Multiple Inputs to Simulate/Predict Hepatotoxicity

Exposure
- Pharmacokinetics

Mechanisms
- Bile Acid Transporter Inhibition
- Mitochondrial Respiration
- ROS Generation

Interpatient Variability
- Unique Parameter Combinations

Simulated Frequency & Severity of Liver Injury
Analysis of Mechanisms

Institute for Drug Safety Sciences
DILIsym Integrates Multiple Inputs to Simulate/Predict Hepatotoxicity

Exposure
- Pharmacokinetics

Mechanisms
- Bile Acid Transporter Inhibition
- Mitochondrial Respiration
- ROS Generation

Interpatient Variability
- Unique Parameter Combinations

Simulated Frequency & Severity of Liver Injury

Analysis of Mechanisms
Contribution to Predicted ALT elevations in Simulated Human Population

<table>
<thead>
<tr>
<th>DILI Mechanism</th>
<th>Solithromycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial Respiration Inhibition</td>
<td>Predominant</td>
</tr>
<tr>
<td>Oxidative Stress</td>
<td>None</td>
</tr>
<tr>
<td>Bile Acid Transporter Inhibition</td>
<td>Minor</td>
</tr>
</tbody>
</table>

Data presented at Nov 4 2017 anti-infective Ad com
Contribution to Predicted ALT elevations in Simulated Human Population

<table>
<thead>
<tr>
<th>DILI Mechanism</th>
<th>Solithromycin</th>
<th></th>
<th>Erythromycin</th>
<th>Clarithromycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial Respiration Inhibition</td>
<td>Predominant</td>
<td></td>
<td>None</td>
<td>Predominant</td>
</tr>
<tr>
<td>Oxidative Stress</td>
<td>None</td>
<td></td>
<td>Minor</td>
<td>None</td>
</tr>
<tr>
<td>Bile Acid Transporter Inhibition</td>
<td>Minor</td>
<td></td>
<td>Predominant</td>
<td>Minor</td>
</tr>
</tbody>
</table>
Contribution to Predicted ALT elevations in Simulated Human Population

<table>
<thead>
<tr>
<th>DILI Mechanism</th>
<th>Solithromycin</th>
<th>Telithromycin</th>
<th>Erythromycin</th>
<th>Clarithromycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial Respiration Inhibition</td>
<td>Predominant</td>
<td>None</td>
<td>None</td>
<td>Predominant</td>
</tr>
<tr>
<td>Oxidative Stress</td>
<td>None</td>
<td>None</td>
<td>Minor</td>
<td>None</td>
</tr>
<tr>
<td>Bile Acid Transporter Inhibition</td>
<td>Minor</td>
<td>Predominant</td>
<td>Predominant</td>
<td>Minor</td>
</tr>
</tbody>
</table>

Data presented at Nov 4 2017 anti-infective Ad com
Conclusion

The predominant mechanisms underlying dose dependent hepatoxicity can vary within a drug class.
Current uses of DILIsym®

1). Understand predict dose dependent serum ALT elevations, their implications, and how to avoid them.

2). Improve interpretation of traditional biomarkers
 a). Infer % hepatocyte death by necrosis vs apoptosis
 b). Explain elevations in serum bilirubin due to inhibition of transporters of UGT1A1
DILIsym Bilirubin Sub-Model Overview

Systems Pharmacology Modeling of Drug-Induced Hyperbilirubinemia: Differentiating Hepatotoxicity and Inhibition of Enzymes/Transporters

The way forward

1). Incorporate adaptive immune responses

2). Model cholestasis and bile duct injury (eg. MDR3)

3). Vet metabolically competent liver cell culture systems to improve the efficiency of the modeling process

4). Priorities voted on by our partners.
The DILI-sim Team
The DILI-sim Scientific Advisory Board Includes World Class Scientists from Academia

- Neil Kaplowitz
- Paul Watkins
- Kevin Park
- Jack Uetrecht
- DILI-sym®
- David Pisetsky
- Robert Roth
Special Thanks to the DILI-sim Partners